Spaces:
Running
Running
File size: 39,282 Bytes
20f8860 909f1fb 20f8860 fba43f1 909f1fb 20f8860 909f1fb fba43f1 909f1fb 20f8860 1ba0b1f 20f8860 909f1fb 20f8860 7a708c4 20f8860 1ba0b1f 20f8860 7a708c4 20f8860 909f1fb 20f8860 1ba0b1f 20f8860 909f1fb 20f8860 fba43f1 20f8860 6be4ec1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 |
import gradio as gr
from collections import Counter
import csv
import os
from functools import lru_cache
#import app
from mtdna_classifier import classify_sample_location
import data_preprocess, model, pipeline
import subprocess
import json
import pandas as pd
import io
import re
import tempfile
import gspread
from oauth2client.service_account import ServiceAccountCredentials
from io import StringIO
import hashlib
import threading
# @lru_cache(maxsize=3600)
# def classify_sample_location_cached(accession):
# return classify_sample_location(accession)
#@lru_cache(maxsize=3600)
def pipeline_classify_sample_location_cached(accession,stop_flag=None, save_df=None):
print("inside pipeline_classify_sample_location_cached, and [accession] is ", [accession])
print("len of save df: ", len(save_df))
return pipeline.pipeline_with_gemini([accession],stop_flag=stop_flag, save_df=save_df)
# Count and suggest final location
# def compute_final_suggested_location(rows):
# candidates = [
# row.get("Predicted Location", "").strip()
# for row in rows
# if row.get("Predicted Location", "").strip().lower() not in ["", "sample id not found", "unknown"]
# ] + [
# row.get("Inferred Region", "").strip()
# for row in rows
# if row.get("Inferred Region", "").strip().lower() not in ["", "sample id not found", "unknown"]
# ]
# if not candidates:
# return Counter(), ("Unknown", 0)
# # Step 1: Combine into one string and split using regex to handle commas, line breaks, etc.
# tokens = []
# for item in candidates:
# # Split by comma, whitespace, and newlines
# parts = re.split(r'[\s,]+', item)
# tokens.extend(parts)
# # Step 2: Clean and normalize tokens
# tokens = [word.strip() for word in tokens if word.strip().isalpha()] # Keep only alphabetic tokens
# # Step 3: Count
# counts = Counter(tokens)
# # Step 4: Get most common
# top_location, count = counts.most_common(1)[0]
# return counts, (top_location, count)
# Store feedback (with required fields)
def store_feedback_to_google_sheets(accession, answer1, answer2, contact=""):
if not answer1.strip() or not answer2.strip():
return "β οΈ Please answer both questions before submitting."
try:
# β
Step: Load credentials from Hugging Face secret
creds_dict = json.loads(os.environ["GCP_CREDS_JSON"])
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
# Connect to Google Sheet
client = gspread.authorize(creds)
sheet = client.open("feedback_mtdna").sheet1 # make sure sheet name matches
# Append feedback
sheet.append_row([accession, answer1, answer2, contact])
return "β
Feedback submitted. Thank you!"
except Exception as e:
return f"β Error submitting feedback: {e}"
# helper function to extract accessions
def extract_accessions_from_input(file=None, raw_text=""):
print(f"RAW TEXT RECEIVED: {raw_text}")
accessions = []
seen = set()
if file:
try:
if file.name.endswith(".csv"):
df = pd.read_csv(file)
elif file.name.endswith(".xlsx"):
df = pd.read_excel(file)
else:
return [], "Unsupported file format. Please upload CSV or Excel."
for acc in df.iloc[:, 0].dropna().astype(str).str.strip():
if acc not in seen:
accessions.append(acc)
seen.add(acc)
except Exception as e:
return [], f"Failed to read file: {e}"
if raw_text:
text_ids = [s.strip() for s in re.split(r"[\n,;\t]", raw_text) if s.strip()]
for acc in text_ids:
if acc not in seen:
accessions.append(acc)
seen.add(acc)
return list(accessions), None
# β
Add a new helper to backend: `filter_unprocessed_accessions()`
def get_incomplete_accessions(file_path):
df = pd.read_excel(file_path)
incomplete_accessions = []
for _, row in df.iterrows():
sample_id = str(row.get("Sample ID", "")).strip()
# Skip if no sample ID
if not sample_id:
continue
# Drop the Sample ID and check if the rest is empty
other_cols = row.drop(labels=["Sample ID"], errors="ignore")
if other_cols.isna().all() or (other_cols.astype(str).str.strip() == "").all():
# Extract the accession number from the sample ID using regex
match = re.search(r"\b[A-Z]{2,4}\d{4,}", sample_id)
if match:
incomplete_accessions.append(match.group(0))
print(len(incomplete_accessions))
return incomplete_accessions
# GOOGLE_SHEET_NAME = "known_samples"
# USAGE_DRIVE_FILENAME = "user_usage_log.json"
def summarize_results(accession, stop_flag=None):
# Early bail
if stop_flag is not None and stop_flag.value:
print(f"π Skipping {accession} before starting.")
return []
# try cache first
cached = check_known_output(accession)
if cached:
print(f"β
Using cached result for {accession}")
return [[
cached["Sample ID"] or "unknown",
cached["Predicted Country"] or "unknown",
cached["Country Explanation"] or "unknown",
cached["Predicted Sample Type"] or "unknown",
cached["Sample Type Explanation"] or "unknown",
cached["Sources"] or "No Links",
cached["Time cost"]
]]
# only run when nothing in the cache
try:
print("try gemini pipeline: ",accession)
# β
Load credentials from Hugging Face secret
creds_dict = json.loads(os.environ["GCP_CREDS_JSON"])
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
client = gspread.authorize(creds)
spreadsheet = client.open("known_samples")
sheet = spreadsheet.sheet1
data = sheet.get_all_values()
if not data:
print("β οΈ Google Sheet 'known_samples' is empty.")
return None
save_df = pd.DataFrame(data[1:], columns=data[0])
print("before pipeline, len of save df: ", len(save_df))
outputs = pipeline_classify_sample_location_cached(accession, stop_flag, save_df)
if stop_flag is not None and stop_flag.value:
print(f"π Skipped {accession} mid-pipeline.")
return []
# outputs = {'KU131308': {'isolate':'BRU18',
# 'country': {'brunei': ['ncbi',
# 'rag_llm-The text mentions "BRU18 Brunei Borneo" in a table listing various samples, and it is not described as ancient or archaeological.']},
# 'sample_type': {'modern':
# ['rag_llm-The text mentions "BRU18 Brunei Borneo" in a table listing various samples, and it is not described as ancient or archaeological.']},
# 'query_cost': 9.754999999999999e-05,
# 'time_cost': '24.776 seconds',
# 'source': ['https://doi.org/10.1007/s00439-015-1620-z',
# 'https://static-content.springer.com/esm/art%3A10.1007%2Fs00439-015-1620-z/MediaObjects/439_2015_1620_MOESM1_ESM.pdf',
# 'https://static-content.springer.com/esm/art%3A10.1007%2Fs00439-015-1620-z/MediaObjects/439_2015_1620_MOESM2_ESM.xls']}}
except Exception as e:
return []#, f"Error: {e}", f"Error: {e}", f"Error: {e}"
if accession not in outputs:
print("no accession in output ", accession)
return []#, "Accession not found in results.", "Accession not found in results.", "Accession not found in results."
row_score = []
rows = []
save_rows = []
for key in outputs:
pred_country, pred_sample, country_explanation, sample_explanation = "unknown","unknown","unknown","unknown"
for section, results in outputs[key].items():
if section == "country" or section =="sample_type":
pred_output = []#"\n".join(list(results.keys()))
output_explanation = ""
for result, content in results.items():
if len(result) == 0: result = "unknown"
if len(content) == 0: output_explanation = "unknown"
else:
output_explanation += 'Method: ' + "\nMethod: ".join(content) + "\n"
pred_output.append(result)
pred_output = "\n".join(pred_output)
if section == "country":
pred_country, country_explanation = pred_output, output_explanation
elif section == "sample_type":
pred_sample, sample_explanation = pred_output, output_explanation
if outputs[key]["isolate"].lower()!="unknown":
label = key + "(Isolate: " + outputs[key]["isolate"] + ")"
else: label = key
if len(outputs[key]["source"]) == 0: outputs[key]["source"] = ["No Links"]
row = {
"Sample ID": label or "unknown",
"Predicted Country": pred_country or "unknown",
"Country Explanation": country_explanation or "unknown",
"Predicted Sample Type":pred_sample or "unknown",
"Sample Type Explanation":sample_explanation or "unknown",
"Sources": "\n".join(outputs[key]["source"]) or "No Links",
"Time cost": outputs[key]["time_cost"]
}
#row_score.append(row)
rows.append(list(row.values()))
save_row = {
"Sample ID": label or "unknown",
"Predicted Country": pred_country or "unknown",
"Country Explanation": country_explanation or "unknown",
"Predicted Sample Type":pred_sample or "unknown",
"Sample Type Explanation":sample_explanation or "unknown",
"Sources": "\n".join(outputs[key]["source"]) or "No Links",
"Query_cost": outputs[key]["query_cost"] or "",
"Time cost": outputs[key]["time_cost"] or "",
"file_chunk":outputs[key]["file_chunk"] or "",
"file_all_output":outputs[key]["file_all_output"] or ""
}
#row_score.append(row)
save_rows.append(list(save_row.values()))
# #location_counts, (final_location, count) = compute_final_suggested_location(row_score)
# summary_lines = [f"### π§ Location Summary:\n"]
# summary_lines += [f"- **{loc}**: {cnt} times" for loc, cnt in location_counts.items()]
# summary_lines.append(f"\n**Final Suggested Location:** πΊοΈ **{final_location}** (mentioned {count} times)")
# summary = "\n".join(summary_lines)
# save the new running sample to known excel file
# try:
# df_new = pd.DataFrame(save_rows, columns=["Sample ID", "Predicted Country", "Country Explanation", "Predicted Sample Type", "Sample Type Explanation", "Sources", "Query_cost","Time cost"])
# if os.path.exists(KNOWN_OUTPUT_PATH):
# df_old = pd.read_excel(KNOWN_OUTPUT_PATH)
# df_combined = pd.concat([df_old, df_new]).drop_duplicates(subset="Sample ID")
# else:
# df_combined = df_new
# df_combined.to_excel(KNOWN_OUTPUT_PATH, index=False)
# except Exception as e:
# print(f"β οΈ Failed to save known output: {e}")
# try:
# df_new = pd.DataFrame(save_rows, columns=[
# "Sample ID", "Predicted Country", "Country Explanation",
# "Predicted Sample Type", "Sample Type Explanation",
# "Sources", "Query_cost", "Time cost"
# ])
# # β
Google Sheets API setup
# creds_dict = json.loads(os.environ["GCP_CREDS_JSON"])
# scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
# creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
# client = gspread.authorize(creds)
# # β
Open the known_samples sheet
# spreadsheet = client.open("known_samples") # Replace with your sheet name
# sheet = spreadsheet.sheet1
# # β
Read old data
# existing_data = sheet.get_all_values()
# if existing_data:
# df_old = pd.DataFrame(existing_data[1:], columns=existing_data[0])
# else:
# df_old = pd.DataFrame(columns=df_new.columns)
# # β
Combine and remove duplicates
# df_combined = pd.concat([df_old, df_new], ignore_index=True).drop_duplicates(subset="Sample ID")
# # β
Clear and write back
# sheet.clear()
# sheet.update([df_combined.columns.values.tolist()] + df_combined.values.tolist())
# except Exception as e:
# print(f"β οΈ Failed to save known output to Google Sheets: {e}")
try:
# Prepare as DataFrame
df_new = pd.DataFrame(save_rows, columns=[
"Sample ID", "Predicted Country", "Country Explanation",
"Predicted Sample Type", "Sample Type Explanation",
"Sources", "Query_cost", "Time cost", "file_chunk", "file_all_output"
])
# β
Setup Google Sheets
creds_dict = json.loads(os.environ["GCP_CREDS_JSON"])
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
client = gspread.authorize(creds)
spreadsheet = client.open("known_samples")
sheet = spreadsheet.sheet1
# β
Read existing data
existing_data = sheet.get_all_values()
if existing_data:
df_old = pd.DataFrame(existing_data[1:], columns=existing_data[0])
else:
df_old = pd.DataFrame(columns=[
"Sample ID", "Actual_country", "Actual_sample_type", "Country Explanation",
"Match_country", "Match_sample_type", "Predicted Country", "Predicted Sample Type",
"Query_cost", "Sample Type Explanation", "Sources", "Time cost", "file_chunk", "file_all_output"
])
# β
Index by Sample ID
df_old.set_index("Sample ID", inplace=True)
df_new.set_index("Sample ID", inplace=True)
# β
Update only matching fields
update_columns = [
"Predicted Country", "Predicted Sample Type", "Country Explanation",
"Sample Type Explanation", "Sources", "Query_cost", "Time cost", "file_chunk", "file_all_output"
]
for idx, row in df_new.iterrows():
if idx not in df_old.index:
df_old.loc[idx] = "" # new row, fill empty first
for col in update_columns:
if pd.notna(row[col]) and row[col] != "":
df_old.at[idx, col] = row[col]
# β
Reset and write back
df_old.reset_index(inplace=True)
sheet.clear()
sheet.update([df_old.columns.values.tolist()] + df_old.values.tolist())
print("β
Match results saved to known_samples.")
except Exception as e:
print(f"β Failed to update known_samples: {e}")
return rows#, summary, labelAncient_Modern, explain_label
# save the batch input in excel file
# def save_to_excel(all_rows, summary_text, flag_text, filename):
# with pd.ExcelWriter(filename) as writer:
# # Save table
# df_new = pd.DataFrame(all_rows, columns=["Sample ID", "Predicted Country", "Country Explanation", "Predicted Sample Type", "Sample Type Explanation", "Sources", "Time cost"])
# df.to_excel(writer, sheet_name="Detailed Results", index=False)
# try:
# df_old = pd.read_excel(filename)
# except:
# df_old = pd.DataFrame([[]], columns=["Sample ID", "Predicted Country", "Country Explanation", "Predicted Sample Type", "Sample Type Explanation", "Sources", "Time cost"])
# df_combined = pd.concat([df_old, df_new]).drop_duplicates(subset="Sample ID")
# # if os.path.exists(filename):
# # df_old = pd.read_excel(filename)
# # df_combined = pd.concat([df_old, df_new]).drop_duplicates(subset="Sample ID")
# # else:
# # df_combined = df_new
# df_combined.to_excel(filename, index=False)
# # # Save summary
# # summary_df = pd.DataFrame({"Summary": [summary_text]})
# # summary_df.to_excel(writer, sheet_name="Summary", index=False)
# # # Save flag
# # flag_df = pd.DataFrame({"Flag": [flag_text]})
# # flag_df.to_excel(writer, sheet_name="Ancient_Modern_Flag", index=False)
# def save_to_excel(all_rows, summary_text, flag_text, filename):
# df_new = pd.DataFrame(all_rows, columns=[
# "Sample ID", "Predicted Country", "Country Explanation",
# "Predicted Sample Type", "Sample Type Explanation",
# "Sources", "Time cost"
# ])
# try:
# if os.path.exists(filename):
# df_old = pd.read_excel(filename)
# else:
# df_old = pd.DataFrame(columns=df_new.columns)
# except Exception as e:
# print(f"β οΈ Warning reading old Excel file: {e}")
# df_old = pd.DataFrame(columns=df_new.columns)
# #df_combined = pd.concat([df_new, df_old], ignore_index=True).drop_duplicates(subset="Sample ID", keep="first")
# df_old.set_index("Sample ID", inplace=True)
# df_new.set_index("Sample ID", inplace=True)
# df_old.update(df_new) # <-- update matching rows in df_old with df_new content
# df_combined = df_old.reset_index()
# try:
# df_combined.to_excel(filename, index=False)
# except Exception as e:
# print(f"β Failed to write Excel file {filename}: {e}")
def save_to_excel(all_rows, summary_text, flag_text, filename, is_resume=False):
df_new = pd.DataFrame(all_rows, columns=[
"Sample ID", "Predicted Country", "Country Explanation",
"Predicted Sample Type", "Sample Type Explanation",
"Sources", "Time cost"
])
if is_resume and os.path.exists(filename):
try:
df_old = pd.read_excel(filename)
except Exception as e:
print(f"β οΈ Warning reading old Excel file: {e}")
df_old = pd.DataFrame(columns=df_new.columns)
# Set index and update existing rows
df_old.set_index("Sample ID", inplace=True)
df_new.set_index("Sample ID", inplace=True)
df_old.update(df_new)
df_combined = df_old.reset_index()
else:
# If not resuming or file doesn't exist, just use new rows
df_combined = df_new
try:
df_combined.to_excel(filename, index=False)
except Exception as e:
print(f"β Failed to write Excel file {filename}: {e}")
# save the batch input in JSON file
def save_to_json(all_rows, summary_text, flag_text, filename):
output_dict = {
"Detailed_Results": all_rows#, # <-- make sure this is a plain list, not a DataFrame
# "Summary_Text": summary_text,
# "Ancient_Modern_Flag": flag_text
}
# If all_rows is a DataFrame, convert it
if isinstance(all_rows, pd.DataFrame):
output_dict["Detailed_Results"] = all_rows.to_dict(orient="records")
with open(filename, "w") as external_file:
json.dump(output_dict, external_file, indent=2)
# save the batch input in Text file
def save_to_txt(all_rows, summary_text, flag_text, filename):
if isinstance(all_rows, pd.DataFrame):
detailed_results = all_rows.to_dict(orient="records")
output = ""
#output += ",".join(list(detailed_results[0].keys())) + "\n\n"
output += ",".join([str(k) for k in detailed_results[0].keys()]) + "\n\n"
for r in detailed_results:
output += ",".join([str(v) for v in r.values()]) + "\n\n"
with open(filename, "w") as f:
f.write("=== Detailed Results ===\n")
f.write(output + "\n")
# f.write("\n=== Summary ===\n")
# f.write(summary_text + "\n")
# f.write("\n=== Ancient/Modern Flag ===\n")
# f.write(flag_text + "\n")
def save_batch_output(all_rows, output_type, summary_text=None, flag_text=None):
tmp_dir = tempfile.mkdtemp()
#html_table = all_rows.value # assuming this is stored somewhere
# Parse back to DataFrame
#all_rows = pd.read_html(all_rows)[0] # [0] because read_html returns a list
all_rows = pd.read_html(StringIO(all_rows))[0]
print(all_rows)
if output_type == "Excel":
file_path = f"{tmp_dir}/batch_output.xlsx"
save_to_excel(all_rows, summary_text, flag_text, file_path)
elif output_type == "JSON":
file_path = f"{tmp_dir}/batch_output.json"
save_to_json(all_rows, summary_text, flag_text, file_path)
print("Done with JSON")
elif output_type == "TXT":
file_path = f"{tmp_dir}/batch_output.txt"
save_to_txt(all_rows, summary_text, flag_text, file_path)
else:
return gr.update(visible=False) # invalid option
return gr.update(value=file_path, visible=True)
# save cost by checking the known outputs
# def check_known_output(accession):
# if not os.path.exists(KNOWN_OUTPUT_PATH):
# return None
# try:
# df = pd.read_excel(KNOWN_OUTPUT_PATH)
# match = re.search(r"\b[A-Z]{2,4}\d{4,}", accession)
# if match:
# accession = match.group(0)
# matched = df[df["Sample ID"].str.contains(accession, case=False, na=False)]
# if not matched.empty:
# return matched.iloc[0].to_dict() # Return the cached row
# except Exception as e:
# print(f"β οΈ Failed to load known samples: {e}")
# return None
# def check_known_output(accession):
# try:
# # β
Load credentials from Hugging Face secret
# creds_dict = json.loads(os.environ["GCP_CREDS_JSON"])
# scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
# creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
# client = gspread.authorize(creds)
# # β
Open the known_samples sheet
# spreadsheet = client.open("known_samples") # Replace with your sheet name
# sheet = spreadsheet.sheet1
# # β
Read all rows
# data = sheet.get_all_values()
# if not data:
# return None
# df = pd.DataFrame(data[1:], columns=data[0]) # Skip header row
# # β
Normalize accession pattern
# match = re.search(r"\b[A-Z]{2,4}\d{4,}", accession)
# if match:
# accession = match.group(0)
# matched = df[df["Sample ID"].str.contains(accession, case=False, na=False)]
# if not matched.empty:
# return matched.iloc[0].to_dict()
# except Exception as e:
# print(f"β οΈ Failed to load known samples from Google Sheets: {e}")
# return None
def check_known_output(accession):
print("inside check known output function")
try:
# β
Load credentials from Hugging Face secret
creds_dict = json.loads(os.environ["GCP_CREDS_JSON"])
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
client = gspread.authorize(creds)
spreadsheet = client.open("known_samples")
sheet = spreadsheet.sheet1
data = sheet.get_all_values()
if not data:
print("β οΈ Google Sheet 'known_samples' is empty.")
return None
df = pd.DataFrame(data[1:], columns=data[0])
if "Sample ID" not in df.columns:
print("β Column 'Sample ID' not found in Google Sheet.")
return None
match = re.search(r"\b[A-Z]{2,4}\d{4,}", accession)
if match:
accession = match.group(0)
matched = df[df["Sample ID"].str.contains(accession, case=False, na=False)]
if not matched.empty:
#return matched.iloc[0].to_dict()
row = matched.iloc[0]
country = row.get("Predicted Country", "").strip().lower()
sample_type = row.get("Predicted Sample Type", "").strip().lower()
if country and country != "unknown" and sample_type and sample_type != "unknown":
return row.to_dict()
else:
print(f"β οΈ Accession {accession} found but country/sample_type is unknown or empty.")
return None
else:
print(f"π Accession {accession} not found in known_samples.")
return None
except Exception as e:
import traceback
print("β Exception occurred during check_known_output:")
traceback.print_exc()
return None
def hash_user_id(user_input):
return hashlib.sha256(user_input.encode()).hexdigest()
# β
Load and save usage count
# def load_user_usage():
# if not os.path.exists(USER_USAGE_TRACK_FILE):
# return {}
# try:
# with open(USER_USAGE_TRACK_FILE, "r") as f:
# content = f.read().strip()
# if not content:
# return {} # file is empty
# return json.loads(content)
# except (json.JSONDecodeError, ValueError):
# print("β οΈ Warning: user_usage.json is corrupted or invalid. Resetting.")
# return {} # fallback to empty dict
# def load_user_usage():
# try:
# creds_dict = json.loads(os.environ["GCP_CREDS_JSON"])
# scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
# creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
# client = gspread.authorize(creds)
# sheet = client.open("user_usage_log").sheet1
# data = sheet.get_all_records() # Assumes columns: email, usage_count
# usage = {}
# for row in data:
# email = row.get("email", "").strip().lower()
# count = int(row.get("usage_count", 0))
# if email:
# usage[email] = count
# return usage
# except Exception as e:
# print(f"β οΈ Failed to load user usage from Google Sheets: {e}")
# return {}
# def load_user_usage():
# try:
# parent_id = pipeline.get_or_create_drive_folder("mtDNA-Location-Classifier")
# iterate3_id = pipeline.get_or_create_drive_folder("iterate3", parent_id=parent_id)
# found = pipeline.find_drive_file("user_usage_log.json", parent_id=iterate3_id)
# if not found:
# return {} # not found, start fresh
# #file_id = found[0]["id"]
# file_id = found
# content = pipeline.download_drive_file_content(file_id)
# return json.loads(content.strip()) if content.strip() else {}
# except Exception as e:
# print(f"β οΈ Failed to load user_usage_log.json from Google Drive: {e}")
# return {}
def load_user_usage():
try:
creds_dict = json.loads(os.environ["GCP_CREDS_JSON"])
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
client = gspread.authorize(creds)
sheet = client.open("user_usage_log").sheet1
data = sheet.get_all_values()
print("data: ", data)
print("π§ͺ Raw header row from sheet:", data[0])
print("π§ͺ Character codes in each header:")
for h in data[0]:
print([ord(c) for c in h])
if not data or len(data) < 2:
print("β οΈ Sheet is empty or missing rows.")
return {}
headers = [h.strip().lower() for h in data[0]]
if "email" not in headers or "usage_count" not in headers:
print("β Header format incorrect. Must have 'email' and 'usage_count'.")
return {}
permitted_index = headers.index("permitted_samples") if "permitted_samples" in headers else None
df = pd.DataFrame(data[1:], columns=headers)
usage = {}
permitted = {}
for _, row in df.iterrows():
email = row.get("email", "").strip().lower()
try:
#count = int(row.get("usage_count", 0))
try:
count = int(float(row.get("usage_count", 0)))
except Exception:
print(f"β οΈ Invalid usage_count for {email}: {row.get('usage_count')}")
count = 0
if email:
usage[email] = count
if permitted_index is not None:
try:
permitted_count = int(float(row.get("permitted_samples", 50)))
permitted[email] = permitted_count
except:
permitted[email] = 50
except ValueError:
print(f"β οΈ Invalid usage_count for {email}: {row.get('usage_count')}")
return usage, permitted
except Exception as e:
print(f"β Error in load_user_usage: {e}")
return {}, {}
# def save_user_usage(usage):
# with open(USER_USAGE_TRACK_FILE, "w") as f:
# json.dump(usage, f, indent=2)
# def save_user_usage(usage_dict):
# try:
# creds_dict = json.loads(os.environ["GCP_CREDS_JSON"])
# scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
# creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
# client = gspread.authorize(creds)
# sheet = client.open("user_usage_log").sheet1
# sheet.clear() # clear old contents first
# # Write header + rows
# rows = [["email", "usage_count"]] + [[email, count] for email, count in usage_dict.items()]
# sheet.update(rows)
# except Exception as e:
# print(f"β Failed to save user usage to Google Sheets: {e}")
# def save_user_usage(usage_dict):
# try:
# parent_id = pipeline.get_or_create_drive_folder("mtDNA-Location-Classifier")
# iterate3_id = pipeline.get_or_create_drive_folder("iterate3", parent_id=parent_id)
# import tempfile
# tmp_path = os.path.join(tempfile.gettempdir(), "user_usage_log.json")
# print("πΎ Saving this usage dict:", usage_dict)
# with open(tmp_path, "w") as f:
# json.dump(usage_dict, f, indent=2)
# pipeline.upload_file_to_drive(tmp_path, "user_usage_log.json", iterate3_id)
# except Exception as e:
# print(f"β Failed to save user_usage_log.json to Google Drive: {e}")
# def save_user_usage(usage_dict):
# try:
# creds_dict = json.loads(os.environ["GCP_CREDS_JSON"])
# scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
# creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
# client = gspread.authorize(creds)
# spreadsheet = client.open("user_usage_log")
# sheet = spreadsheet.sheet1
# # Step 1: Convert new usage to DataFrame
# df_new = pd.DataFrame(list(usage_dict.items()), columns=["email", "usage_count"])
# df_new["email"] = df_new["email"].str.strip().str.lower()
# # Step 2: Load existing data
# existing_data = sheet.get_all_values()
# print("π§ͺ Sheet existing_data:", existing_data)
# # Try to load old data
# if existing_data and len(existing_data[0]) >= 1:
# df_old = pd.DataFrame(existing_data[1:], columns=existing_data[0])
# # Fix missing columns
# if "email" not in df_old.columns:
# df_old["email"] = ""
# if "usage_count" not in df_old.columns:
# df_old["usage_count"] = 0
# df_old["email"] = df_old["email"].str.strip().str.lower()
# df_old["usage_count"] = pd.to_numeric(df_old["usage_count"], errors="coerce").fillna(0).astype(int)
# else:
# df_old = pd.DataFrame(columns=["email", "usage_count"])
# # Step 3: Merge
# df_combined = pd.concat([df_old, df_new], ignore_index=True)
# df_combined = df_combined.groupby("email", as_index=False).sum()
# # Step 4: Write back
# sheet.clear()
# sheet.update([df_combined.columns.tolist()] + df_combined.astype(str).values.tolist())
# print("β
Saved user usage to user_usage_log sheet.")
# except Exception as e:
# print(f"β Failed to save user usage to Google Sheets: {e}")
def save_user_usage(usage_dict):
try:
creds_dict = json.loads(os.environ["GCP_CREDS_JSON"])
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
client = gspread.authorize(creds)
spreadsheet = client.open("user_usage_log")
sheet = spreadsheet.sheet1
# Build new df
df_new = pd.DataFrame(list(usage_dict.items()), columns=["email", "usage_count"])
df_new["email"] = df_new["email"].str.strip().str.lower()
df_new["usage_count"] = pd.to_numeric(df_new["usage_count"], errors="coerce").fillna(0).astype(int)
# Read existing data
existing_data = sheet.get_all_values()
if existing_data and len(existing_data[0]) >= 2:
df_old = pd.DataFrame(existing_data[1:], columns=existing_data[0])
df_old["email"] = df_old["email"].str.strip().str.lower()
df_old["usage_count"] = pd.to_numeric(df_old["usage_count"], errors="coerce").fillna(0).astype(int)
else:
df_old = pd.DataFrame(columns=["email", "usage_count"])
# β
Overwrite specific emails only
df_old = df_old.set_index("email")
for email, count in usage_dict.items():
email = email.strip().lower()
df_old.loc[email, "usage_count"] = count
df_old = df_old.reset_index()
# Save
sheet.clear()
sheet.update([df_old.columns.tolist()] + df_old.astype(str).values.tolist())
print("β
Saved user usage to user_usage_log sheet.")
except Exception as e:
print(f"β Failed to save user usage to Google Sheets: {e}")
# def increment_usage(user_id, num_samples=1):
# usage = load_user_usage()
# if user_id not in usage:
# usage[user_id] = 0
# usage[user_id] += num_samples
# save_user_usage(usage)
# return usage[user_id]
# def increment_usage(email: str, count: int):
# usage = load_user_usage()
# email_key = email.strip().lower()
# usage[email_key] = usage.get(email_key, 0) + count
# save_user_usage(usage)
# return usage[email_key]
def increment_usage(email: str, count: int = 1):
usage, permitted = load_user_usage()
email_key = email.strip().lower()
#usage[email_key] = usage.get(email_key, 0) + count
current = usage.get(email_key, 0)
new_value = current + count
max_allowed = permitted.get(email_key) or 50
usage[email_key] = max(current, new_value) # β
Prevent overwrite with lower
print(f"π§ͺ increment_usage saving: {email_key=} {current=} + {count=} => {usage[email_key]=}")
print("max allow is: ", max_allowed)
save_user_usage(usage)
return usage[email_key], max_allowed
# run the batch
def summarize_batch(file=None, raw_text="", resume_file=None, user_email="",
stop_flag=None, output_file_path=None,
limited_acc=50, yield_callback=None):
if user_email:
limited_acc += 10
accessions, error = extract_accessions_from_input(file, raw_text)
if error:
#return [], "", "", f"Error: {error}"
return [], f"Error: {error}", 0, "", ""
if resume_file:
accessions = get_incomplete_accessions(resume_file)
tmp_dir = tempfile.mkdtemp()
if not output_file_path:
if resume_file:
output_file_path = os.path.join(tmp_dir, resume_file)
else:
output_file_path = os.path.join(tmp_dir, "batch_output_live.xlsx")
all_rows = []
# all_summaries = []
# all_flags = []
progress_lines = []
warning = ""
if len(accessions) > limited_acc:
accessions = accessions[:limited_acc]
warning = f"Your number of accessions is more than the {limited_acc}, only handle first {limited_acc} accessions"
for i, acc in enumerate(accessions):
if stop_flag and stop_flag.value:
line = f"π Stopped at {acc} ({i+1}/{len(accessions)})"
progress_lines.append(line)
if yield_callback:
yield_callback(line)
print("π User requested stop.")
break
print(f"[{i+1}/{len(accessions)}] Processing {acc}")
try:
# rows, summary, label, explain = summarize_results(acc)
rows = summarize_results(acc)
all_rows.extend(rows)
# all_summaries.append(f"**{acc}**\n{summary}")
# all_flags.append(f"**{acc}**\n### πΊ Ancient/Modern Flag\n**{label}**\n\n_Explanation:_ {explain}")
#save_to_excel(all_rows, summary_text="", flag_text="", filename=output_file_path)
save_to_excel(all_rows, summary_text="", flag_text="", filename=output_file_path, is_resume=bool(resume_file))
line = f"β
Processed {acc} ({i+1}/{len(accessions)})"
progress_lines.append(line)
if yield_callback:
yield_callback(f"β
Processed {acc} ({i+1}/{len(accessions)})")
except Exception as e:
print(f"β Failed to process {acc}: {e}")
continue
#all_summaries.append(f"**{acc}**: Failed - {e}")
#progress_lines.append(f"β
Processed {acc} ({i+1}/{len(accessions)})")
limited_acc -= 1
"""for row in all_rows:
source_column = row[2] # Assuming the "Source" is in the 3rd column (index 2)
if source_column.startswith("http"): # Check if the source is a URL
# Wrap it with HTML anchor tags to make it clickable
row[2] = f'<a href="{source_column}" target="_blank" style="color: blue; text-decoration: underline;">{source_column}</a>'"""
if not warning:
warning = f"You only have {limited_acc} left"
if user_email.strip():
user_hash = hash_user_id(user_email)
total_queries = increment_usage(user_hash, len(all_rows))
else:
total_queries = 0
yield_callback("β
Finished!")
# summary_text = "\n\n---\n\n".join(all_summaries)
# flag_text = "\n\n---\n\n".join(all_flags)
#return all_rows, summary_text, flag_text, gr.update(visible=True), gr.update(visible=False)
#return all_rows, gr.update(visible=True), gr.update(visible=False)
return all_rows, output_file_path, total_queries, "\n".join(progress_lines), warning |