Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,59 +5,52 @@ import re
|
|
5 |
import time
|
6 |
from PIL import Image
|
7 |
import torch
|
8 |
-
import spaces
|
9 |
-
#import subprocess
|
10 |
-
#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
11 |
|
|
|
|
|
12 |
|
|
|
13 |
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct")
|
14 |
-
model = AutoModelForVision2Seq.from_pretrained(
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
18 |
|
|
|
19 |
def model_inference(
|
20 |
input_dict, history, decoding_strategy, temperature, max_new_tokens,
|
21 |
repetition_penalty, top_p
|
22 |
):
|
23 |
text = input_dict["text"]
|
24 |
-
print(input_dict["files"])
|
25 |
if len(input_dict["files"]) > 1:
|
26 |
-
|
27 |
elif len(input_dict["files"]) == 1:
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
if text == "" and not images:
|
32 |
gr.Error("Please input a query and optionally image(s).")
|
33 |
|
34 |
if text == "" and images:
|
35 |
-
gr.Error("Please input a text query along the image(s).")
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
|
40 |
resulting_messages = [
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
]
|
46 |
-
}
|
47 |
]
|
|
|
|
|
48 |
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
|
49 |
inputs = processor(text=prompt, images=[images], return_tensors="pt")
|
50 |
-
inputs = {k: v.to(
|
|
|
51 |
generation_args = {
|
52 |
"max_new_tokens": max_new_tokens,
|
53 |
"repetition_penalty": repetition_penalty,
|
54 |
-
|
55 |
}
|
56 |
|
57 |
-
assert decoding_strategy in [
|
58 |
-
"Greedy",
|
59 |
-
"Top P Sampling",
|
60 |
-
]
|
61 |
if decoding_strategy == "Greedy":
|
62 |
generation_args["do_sample"] = False
|
63 |
elif decoding_strategy == "Top P Sampling":
|
@@ -66,8 +59,9 @@ def model_inference(
|
|
66 |
generation_args["top_p"] = top_p
|
67 |
|
68 |
generation_args.update(inputs)
|
69 |
-
|
70 |
-
|
|
|
71 |
generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
|
72 |
generated_text = ""
|
73 |
|
@@ -76,63 +70,69 @@ def model_inference(
|
|
76 |
thread.join()
|
77 |
|
78 |
buffer = ""
|
79 |
-
|
80 |
-
|
81 |
for new_text in streamer:
|
82 |
-
|
83 |
-
|
84 |
-
generated_text_without_prompt = buffer#[len(ext_buffer):]
|
85 |
-
time.sleep(0.01)
|
86 |
-
yield buffer
|
87 |
-
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
-
|
|
|
|
5 |
import time
|
6 |
from PIL import Image
|
7 |
import torch
|
|
|
|
|
|
|
8 |
|
9 |
+
# Check for GPU availability
|
10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
|
12 |
+
# Load model and processor
|
13 |
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct")
|
14 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
15 |
+
"HuggingFaceTB/SmolVLM-Instruct",
|
16 |
+
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32,
|
17 |
+
device_map="auto" if device == "cpu" else None # Automatically maps to CPU if no GPU
|
18 |
+
).to(device)
|
19 |
|
20 |
+
# Inference function
|
21 |
def model_inference(
|
22 |
input_dict, history, decoding_strategy, temperature, max_new_tokens,
|
23 |
repetition_penalty, top_p
|
24 |
):
|
25 |
text = input_dict["text"]
|
|
|
26 |
if len(input_dict["files"]) > 1:
|
27 |
+
images = [Image.open(image).convert("RGB") for image in input_dict["files"]]
|
28 |
elif len(input_dict["files"]) == 1:
|
29 |
+
images = [Image.open(input_dict["files"][0]).convert("RGB")]
|
30 |
+
else:
|
|
|
|
|
31 |
gr.Error("Please input a query and optionally image(s).")
|
32 |
|
33 |
if text == "" and images:
|
34 |
+
gr.Error("Please input a text query along with the image(s).")
|
|
|
|
|
|
|
35 |
|
36 |
resulting_messages = [
|
37 |
+
{
|
38 |
+
"role": "user",
|
39 |
+
"content": [{"type": "image"} for _ in range(len(images))] + [
|
40 |
+
{"type": "text", "text": text}
|
|
|
|
|
41 |
]
|
42 |
+
}
|
43 |
+
]
|
44 |
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
|
45 |
inputs = processor(text=prompt, images=[images], return_tensors="pt")
|
46 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
47 |
+
|
48 |
generation_args = {
|
49 |
"max_new_tokens": max_new_tokens,
|
50 |
"repetition_penalty": repetition_penalty,
|
|
|
51 |
}
|
52 |
|
53 |
+
assert decoding_strategy in ["Greedy", "Top P Sampling"]
|
|
|
|
|
|
|
54 |
if decoding_strategy == "Greedy":
|
55 |
generation_args["do_sample"] = False
|
56 |
elif decoding_strategy == "Top P Sampling":
|
|
|
59 |
generation_args["top_p"] = top_p
|
60 |
|
61 |
generation_args.update(inputs)
|
62 |
+
|
63 |
+
# Stream generation
|
64 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
65 |
generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
|
66 |
generated_text = ""
|
67 |
|
|
|
70 |
thread.join()
|
71 |
|
72 |
buffer = ""
|
|
|
|
|
73 |
for new_text in streamer:
|
74 |
+
buffer += new_text
|
75 |
+
yield buffer
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
# Gradio interface
|
78 |
+
demo = gr.ChatInterface(
|
79 |
+
fn=model_inference,
|
80 |
+
title="Geoscience AI Interpreter",
|
81 |
+
description=(
|
82 |
+
"This app interprets thin sections, seismic images, etc. "
|
83 |
+
"Upload an image and a text query. Works best with single-turn conversations. "
|
84 |
+
"Clear the conversation after a single turn."
|
85 |
+
),
|
86 |
+
textbox=gr.MultimodalTextbox(
|
87 |
+
label="Query Input", file_types=["image"], file_count="multiple"
|
88 |
+
),
|
89 |
+
stop_btn="Stop Generation",
|
90 |
+
multimodal=True,
|
91 |
+
additional_inputs=[
|
92 |
+
gr.Radio(
|
93 |
+
["Top P Sampling", "Greedy"],
|
94 |
+
value="Greedy",
|
95 |
+
label="Decoding strategy",
|
96 |
+
info="Higher values are equivalent to sampling more low-probability tokens.",
|
97 |
+
),
|
98 |
+
gr.Slider(
|
99 |
+
minimum=0.0,
|
100 |
+
maximum=5.0,
|
101 |
+
value=0.4,
|
102 |
+
step=0.1,
|
103 |
+
interactive=True,
|
104 |
+
label="Sampling temperature",
|
105 |
+
info="Higher values produce more diverse outputs.",
|
106 |
+
),
|
107 |
+
gr.Slider(
|
108 |
+
minimum=8,
|
109 |
+
maximum=1024,
|
110 |
+
value=512,
|
111 |
+
step=1,
|
112 |
+
interactive=True,
|
113 |
+
label="Maximum number of new tokens to generate",
|
114 |
+
),
|
115 |
+
gr.Slider(
|
116 |
+
minimum=0.01,
|
117 |
+
maximum=5.0,
|
118 |
+
value=1.2,
|
119 |
+
step=0.01,
|
120 |
+
interactive=True,
|
121 |
+
label="Repetition penalty",
|
122 |
+
info="1.0 is equivalent to no penalty.",
|
123 |
+
),
|
124 |
+
gr.Slider(
|
125 |
+
minimum=0.01,
|
126 |
+
maximum=0.99,
|
127 |
+
value=0.8,
|
128 |
+
step=0.01,
|
129 |
+
interactive=True,
|
130 |
+
label="Top P",
|
131 |
+
info="Higher values are equivalent to sampling more low-probability tokens.",
|
132 |
+
),
|
133 |
+
],
|
134 |
+
cache_examples=False,
|
135 |
+
)
|
136 |
|
137 |
+
# Launch Gradio app
|
138 |
+
demo.launch(debug=True)
|