File size: 12,358 Bytes
0eeee8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
'''
Downloads models from Hugging Face to models/username_modelname.
Example:
python download-model.py facebook/opt-1.3b
'''
import argparse
import base64
import datetime
import hashlib
import json
import os
import re
import sys
from pathlib import Path
import requests
import tqdm
from requests.adapters import HTTPAdapter
from tqdm.contrib.concurrent import thread_map
base = "https://huggingface.co"
class ModelDownloader:
def __init__(self, max_retries=5):
self.session = requests.Session()
if max_retries:
self.session.mount('https://cdn-lfs.huggingface.co', HTTPAdapter(max_retries=max_retries))
self.session.mount('https://huggingface.co', HTTPAdapter(max_retries=max_retries))
if os.getenv('HF_USER') is not None and os.getenv('HF_PASS') is not None:
self.session.auth = (os.getenv('HF_USER'), os.getenv('HF_PASS'))
if os.getenv('HF_TOKEN') is not None:
self.session.headers = {'authorization': f'Bearer {os.getenv("HF_TOKEN")}'}
def sanitize_model_and_branch_names(self, model, branch):
if model[-1] == '/':
model = model[:-1]
if model.startswith(base + '/'):
model = model[len(base) + 1:]
model_parts = model.split(":")
model = model_parts[0] if len(model_parts) > 0 else model
branch = model_parts[1] if len(model_parts) > 1 else branch
if branch is None:
branch = "main"
else:
pattern = re.compile(r"^[a-zA-Z0-9._-]+$")
if not pattern.match(branch):
raise ValueError(
"Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.")
return model, branch
def get_download_links_from_huggingface(self, model, branch, text_only=False, specific_file=None):
page = f"/api/models/{model}/tree/{branch}"
cursor = b""
links = []
sha256 = []
classifications = []
has_pytorch = False
has_pt = False
has_gguf = False
has_safetensors = False
is_lora = False
while True:
url = f"{base}{page}" + (f"?cursor={cursor.decode()}" if cursor else "")
r = self.session.get(url, timeout=10)
r.raise_for_status()
content = r.content
dict = json.loads(content)
if len(dict) == 0:
break
for i in range(len(dict)):
fname = dict[i]['path']
if specific_file not in [None, ''] and fname != specific_file:
continue
if not is_lora and fname.endswith(('adapter_config.json', 'adapter_model.bin')):
is_lora = True
is_pytorch = re.match(r"(pytorch|adapter|gptq)_model.*\.bin", fname)
is_safetensors = re.match(r".*\.safetensors", fname)
is_pt = re.match(r".*\.pt", fname)
is_gguf = re.match(r'.*\.gguf', fname)
is_tiktoken = re.match(r".*\.tiktoken", fname)
is_tokenizer = re.match(r"(tokenizer|ice|spiece).*\.model", fname) or is_tiktoken
is_text = re.match(r".*\.(txt|json|py|md)", fname) or is_tokenizer
if any((is_pytorch, is_safetensors, is_pt, is_gguf, is_tokenizer, is_text)):
if 'lfs' in dict[i]:
sha256.append([fname, dict[i]['lfs']['oid']])
if is_text:
links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
classifications.append('text')
continue
if not text_only:
links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
if is_safetensors:
has_safetensors = True
classifications.append('safetensors')
elif is_pytorch:
has_pytorch = True
classifications.append('pytorch')
elif is_pt:
has_pt = True
classifications.append('pt')
elif is_gguf:
has_gguf = True
classifications.append('gguf')
cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50'
cursor = base64.b64encode(cursor)
cursor = cursor.replace(b'=', b'%3D')
# If both pytorch and safetensors are available, download safetensors only
if (has_pytorch or has_pt) and has_safetensors:
for i in range(len(classifications) - 1, -1, -1):
if classifications[i] in ['pytorch', 'pt']:
links.pop(i)
if has_gguf and specific_file is None:
for i in range(len(classifications) - 1, -1, -1):
if 'q4_k_m' not in links[i].lower():
links.pop(i)
is_llamacpp = has_gguf and specific_file is not None
return links, sha256, is_lora, is_llamacpp
def get_output_folder(self, model, branch, is_lora, is_llamacpp=False, base_folder=None):
if base_folder is None:
base_folder = 'models' if not is_lora else 'loras'
# If the model is of type GGUF, save directly in the base_folder
if is_llamacpp:
return Path(base_folder)
output_folder = f"{'_'.join(model.split('/')[-2:])}"
if branch != 'main':
output_folder += f'_{branch}'
output_folder = Path(base_folder) / output_folder
return output_folder
def get_single_file(self, url, output_folder, start_from_scratch=False):
filename = Path(url.rsplit('/', 1)[1])
output_path = output_folder / filename
headers = {}
mode = 'wb'
if output_path.exists() and not start_from_scratch:
# Check if the file has already been downloaded completely
r = self.session.get(url, stream=True, timeout=10)
total_size = int(r.headers.get('content-length', 0))
if output_path.stat().st_size >= total_size:
return
# Otherwise, resume the download from where it left off
headers = {'Range': f'bytes={output_path.stat().st_size}-'}
mode = 'ab'
with self.session.get(url, stream=True, headers=headers, timeout=10) as r:
r.raise_for_status() # Do not continue the download if the request was unsuccessful
total_size = int(r.headers.get('content-length', 0))
block_size = 1024 * 1024 # 1MB
tqdm_kwargs = {
'total': total_size,
'unit': 'iB',
'unit_scale': True,
'bar_format': '{l_bar}{bar}| {n_fmt:6}/{total_fmt:6} {rate_fmt:6}'
}
if 'COLAB_GPU' in os.environ:
tqdm_kwargs.update({
'position': 0,
'leave': True
})
with open(output_path, mode) as f:
with tqdm.tqdm(**tqdm_kwargs) as t:
count = 0
for data in r.iter_content(block_size):
t.update(len(data))
f.write(data)
if total_size != 0 and self.progress_bar is not None:
count += len(data)
self.progress_bar(float(count) / float(total_size), f"{filename}")
def start_download_threads(self, file_list, output_folder, start_from_scratch=False, threads=4):
thread_map(lambda url: self.get_single_file(url, output_folder, start_from_scratch=start_from_scratch), file_list, max_workers=threads, disable=True)
def download_model_files(self, model, branch, links, sha256, output_folder, progress_bar=None, start_from_scratch=False, threads=4, specific_file=None, is_llamacpp=False):
self.progress_bar = progress_bar
# Create the folder and writing the metadata
output_folder.mkdir(parents=True, exist_ok=True)
if not is_llamacpp:
metadata = f'url: https://huggingface.co/{model}\n' \
f'branch: {branch}\n' \
f'download date: {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}\n'
sha256_str = '\n'.join([f' {item[1]} {item[0]}' for item in sha256])
if sha256_str:
metadata += f'sha256sum:\n{sha256_str}'
metadata += '\n'
(output_folder / 'huggingface-metadata.txt').write_text(metadata)
if specific_file:
print(f"Downloading {specific_file} to {output_folder}")
else:
print(f"Downloading the model to {output_folder}")
self.start_download_threads(links, output_folder, start_from_scratch=start_from_scratch, threads=threads)
def check_model_files(self, model, branch, links, sha256, output_folder):
# Validate the checksums
validated = True
for i in range(len(sha256)):
fpath = (output_folder / sha256[i][0])
if not fpath.exists():
print(f"The following file is missing: {fpath}")
validated = False
continue
with open(output_folder / sha256[i][0], "rb") as f:
file_hash = hashlib.file_digest(f, "sha256").hexdigest()
if file_hash != sha256[i][1]:
print(f'Checksum failed: {sha256[i][0]} {sha256[i][1]}')
validated = False
else:
print(f'Checksum validated: {sha256[i][0]} {sha256[i][1]}')
if validated:
print('[+] Validated checksums of all model files!')
else:
print('[-] Invalid checksums. Rerun download-model.py with the --clean flag.')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('MODEL', type=str, default=None, nargs='?')
parser.add_argument('--branch', type=str, default='main', help='Name of the Git branch to download from.')
parser.add_argument('--threads', type=int, default=4, help='Number of files to download simultaneously.')
parser.add_argument('--text-only', action='store_true', help='Only download text files (txt/json).')
parser.add_argument('--specific-file', type=str, default=None, help='Name of the specific file to download (if not provided, downloads all).')
parser.add_argument('--output', type=str, default=None, help='The folder where the model should be saved.')
parser.add_argument('--clean', action='store_true', help='Does not resume the previous download.')
parser.add_argument('--check', action='store_true', help='Validates the checksums of model files.')
parser.add_argument('--max-retries', type=int, default=5, help='Max retries count when get error in download time.')
args = parser.parse_args()
branch = args.branch
model = args.MODEL
specific_file = args.specific_file
if model is None:
print("Error: Please specify the model you'd like to download (e.g. 'python download-model.py facebook/opt-1.3b').")
sys.exit()
downloader = ModelDownloader(max_retries=args.max_retries)
# Clean up the model/branch names
try:
model, branch = downloader.sanitize_model_and_branch_names(model, branch)
except ValueError as err_branch:
print(f"Error: {err_branch}")
sys.exit()
# Get the download links from Hugging Face
links, sha256, is_lora, is_llamacpp = downloader.get_download_links_from_huggingface(model, branch, text_only=args.text_only, specific_file=specific_file)
# Get the output folder
output_folder = downloader.get_output_folder(model, branch, is_lora, is_llamacpp=is_llamacpp, base_folder=args.output)
if args.check:
# Check previously downloaded files
downloader.check_model_files(model, branch, links, sha256, output_folder)
else:
# Download files
downloader.download_model_files(model, branch, links, sha256, output_folder, specific_file=specific_file, threads=args.threads, is_llamacpp=is_llamacpp)
|