|
import os |
|
from pathlib import Path |
|
from typing import Any, Dict, Optional, Union |
|
|
|
import torch |
|
from torch.nn import CrossEntropyLoss |
|
from transformers import GenerationConfig, PretrainedConfig, PreTrainedModel |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
|
|
from modules import RoPE, shared |
|
from modules.logging_colors import logger |
|
|
|
try: |
|
import llama_cpp |
|
except: |
|
llama_cpp = None |
|
|
|
try: |
|
import llama_cpp_cuda |
|
except: |
|
llama_cpp_cuda = None |
|
|
|
|
|
def llama_cpp_lib(): |
|
if (shared.args.cpu and llama_cpp is not None) or llama_cpp_cuda is None: |
|
return llama_cpp |
|
else: |
|
return llama_cpp_cuda |
|
|
|
|
|
class LlamacppHF(PreTrainedModel): |
|
def __init__(self, model, path): |
|
super().__init__(PretrainedConfig()) |
|
self.model = model |
|
self.generation_config = GenerationConfig() |
|
|
|
self.past_seq = None |
|
self.llamacpp_cache = { |
|
'n_tokens': self.model.n_tokens, |
|
'input_ids': self.model.input_ids, |
|
'scores': self.model.scores, |
|
'ctx': self.model.ctx |
|
} |
|
|
|
if shared.args.cfg_cache: |
|
self.past_seq_negative = None |
|
self.llamacpp_cache_negative = { |
|
'n_tokens': self.model.n_tokens, |
|
'input_ids': self.model.input_ids.copy(), |
|
'scores': self.model.scores.copy(), |
|
'ctx': llama_cpp_lib().llama_new_context_with_model(model.model, model.context_params) |
|
} |
|
|
|
def _validate_model_class(self): |
|
pass |
|
|
|
def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]): |
|
pass |
|
|
|
def prepare_inputs_for_generation(self, input_ids, **kwargs): |
|
return {'input_ids': input_ids, **kwargs} |
|
|
|
def save_cache(self): |
|
self.llamacpp_cache.update({ |
|
'n_tokens': self.model.n_tokens, |
|
'input_ids': self.model.input_ids, |
|
'scores': self.model.scores, |
|
'ctx': self.model.ctx |
|
}) |
|
|
|
def save_negative_cache(self): |
|
self.llamacpp_cache_negative.update({ |
|
'n_tokens': self.model.n_tokens, |
|
'input_ids': self.model.input_ids, |
|
'scores': self.model.scores, |
|
'ctx': self.model.ctx |
|
}) |
|
|
|
def load_cache(self): |
|
self.model.n_tokens = self.llamacpp_cache['n_tokens'] |
|
self.model.input_ids = self.llamacpp_cache['input_ids'] |
|
self.model.scores = self.llamacpp_cache['scores'] |
|
self.model.ctx = self.llamacpp_cache['ctx'] |
|
|
|
def load_negative_cache(self): |
|
self.model.n_tokens = self.llamacpp_cache_negative['n_tokens'] |
|
self.model.input_ids = self.llamacpp_cache_negative['input_ids'] |
|
self.model.scores = self.llamacpp_cache_negative['scores'] |
|
self.model.ctx = self.llamacpp_cache_negative['ctx'] |
|
|
|
@property |
|
def device(self) -> torch.device: |
|
return torch.device(0) |
|
|
|
def __call__(self, *args, **kwargs): |
|
use_cache = kwargs.get('use_cache', True) |
|
labels = kwargs.get('labels', None) |
|
past_key_values = kwargs.get('past_key_values', None) |
|
|
|
if len(args) > 0: |
|
if not shared.args.cfg_cache: |
|
logger.error("Please enable the cfg-cache option to use CFG with llamacpp_HF.") |
|
return |
|
|
|
input_ids = args[0] |
|
is_negative = True |
|
past_seq = self.past_seq_negative |
|
self.load_negative_cache() |
|
else: |
|
input_ids = kwargs['input_ids'] |
|
is_negative = False |
|
past_seq = self.past_seq |
|
self.load_cache() |
|
|
|
seq = input_ids[0].tolist() |
|
if is_negative and past_key_values is not None: |
|
seq = past_key_values + seq |
|
|
|
seq_tensor = torch.tensor(seq) |
|
reset = True |
|
|
|
|
|
|
|
if labels is None: |
|
if past_seq is not None: |
|
min_length = min(past_seq.shape[0], seq_tensor.shape[0]) |
|
indices = torch.nonzero(~torch.eq(past_seq[:min_length], seq_tensor[:min_length])) |
|
if len(indices) > 0: |
|
longest_prefix = indices[0].item() |
|
else: |
|
longest_prefix = min_length |
|
|
|
if longest_prefix > 0: |
|
reset = False |
|
self.model.n_tokens = longest_prefix |
|
if len(seq_tensor) - longest_prefix > 0: |
|
self.model.eval(seq[longest_prefix:]) |
|
|
|
if reset: |
|
self.model.reset() |
|
self.model.eval(seq) |
|
|
|
logits = torch.tensor(self.model.scores[self.model.n_tokens - 1, :]).view(1, 1, -1).to(input_ids.device) |
|
else: |
|
self.model.reset() |
|
self.model.eval(seq) |
|
logits = torch.tensor(self.model.eval_logits) |
|
logits = logits.view(1, logits.shape[0], logits.shape[1]).to(input_ids.device) |
|
|
|
if is_negative: |
|
self.save_negative_cache() |
|
self.past_seq_negative = seq_tensor |
|
else: |
|
self.save_cache() |
|
self.past_seq = seq_tensor |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, logits.shape[-1]) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
return CausalLMOutputWithPast(logits=logits, past_key_values=seq if use_cache else None, loss=loss) |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs): |
|
assert len(model_args) == 0 and len(kwargs) == 0, "extra args is currently not supported" |
|
|
|
if isinstance(pretrained_model_name_or_path, str): |
|
pretrained_model_name_or_path = Path(pretrained_model_name_or_path) |
|
|
|
path = Path(f'{shared.args.model_dir}') / Path(pretrained_model_name_or_path) |
|
if path.is_file(): |
|
model_file = path |
|
else: |
|
model_file = list(path.glob('*.gguf'))[0] |
|
|
|
logger.info(f"llama.cpp weights detected: {model_file}\n") |
|
|
|
if shared.args.tensor_split is None or shared.args.tensor_split.strip() == '': |
|
tensor_split_list = None |
|
else: |
|
tensor_split_list = [float(x) for x in shared.args.tensor_split.strip().split(",")] |
|
|
|
params = { |
|
'model_path': str(model_file), |
|
'n_ctx': shared.args.n_ctx, |
|
'seed': int(shared.args.llama_cpp_seed), |
|
'n_threads': shared.args.threads or None, |
|
'n_threads_batch': shared.args.threads_batch or None, |
|
'n_batch': shared.args.n_batch, |
|
'use_mmap': not shared.args.no_mmap, |
|
'use_mlock': shared.args.mlock, |
|
'mul_mat_q': not shared.args.no_mul_mat_q, |
|
'numa': shared.args.numa, |
|
'n_gpu_layers': shared.args.n_gpu_layers, |
|
'rope_freq_base': RoPE.get_rope_freq_base(shared.args.alpha_value, shared.args.rope_freq_base), |
|
'tensor_split': tensor_split_list, |
|
'rope_freq_scale': 1.0 / shared.args.compress_pos_emb, |
|
'logits_all': shared.args.logits_all, |
|
} |
|
|
|
Llama = llama_cpp_lib().Llama |
|
model = Llama(**params) |
|
|
|
return LlamacppHF(model, model_file) |
|
|