|
import time |
|
|
|
import gradio |
|
import numpy as np |
|
import torch |
|
from transformers import LogitsProcessor |
|
|
|
from modules import html_generator, shared |
|
|
|
params = { |
|
'active': True, |
|
'color_by_perplexity': False, |
|
'color_by_probability': False, |
|
'ppl_scale': 15.0, |
|
'probability_dropdown': False, |
|
'verbose': False |
|
} |
|
|
|
|
|
class PerplexityLogits(LogitsProcessor): |
|
def __init__(self, verbose=False): |
|
self.generated_token_ids = [] |
|
self.selected_probs = [] |
|
self.top_token_ids_list = [] |
|
self.top_probs_list = [] |
|
self.perplexities_list = [] |
|
self.last_probs = None |
|
self.verbose = verbose |
|
|
|
def __call__(self, input_ids, scores): |
|
|
|
probs = torch.softmax(scores, dim=-1, dtype=torch.float) |
|
log_probs = torch.nan_to_num(torch.log(probs)) |
|
entropy = -torch.sum(probs * log_probs) |
|
entropy = entropy.cpu().numpy() |
|
perplexity = round(float(np.exp(entropy)), 4) |
|
self.perplexities_list.append(perplexity) |
|
last_token_id = int(input_ids[0][-1].cpu().numpy().item()) |
|
|
|
self.generated_token_ids.append(last_token_id) |
|
|
|
if len(self.selected_probs) > 0: |
|
|
|
if self.verbose: |
|
print('Probs: Token after', shared.tokenizer.decode(last_token_id)) |
|
print('Probs:', [shared.tokenizer.decode(token_id) for token_id in self.top_token_ids_list[-1][0]]) |
|
print('Probs:', [round(float(prob), 4) for prob in self.top_probs_list[-1][0]]) |
|
if last_token_id in self.top_token_ids_list[-1][0]: |
|
idx = self.top_token_ids_list[-1][0].index(last_token_id) |
|
self.selected_probs.append(self.top_probs_list[-1][0][idx]) |
|
else: |
|
self.top_token_ids_list[-1][0].append(last_token_id) |
|
last_prob = round(float(self.last_probs[last_token_id]), 4) |
|
self.top_probs_list[-1][0].append(last_prob) |
|
self.selected_probs.append(last_prob) |
|
else: |
|
self.selected_probs.append(1.0) |
|
|
|
if self.verbose: |
|
pplbar = "-" |
|
if not np.isnan(perplexity): |
|
pplbar = "*" * round(perplexity) |
|
print(f"PPL: Token after {shared.tokenizer.decode(last_token_id)}\t{perplexity:.2f}\t{pplbar}") |
|
|
|
|
|
top_tokens_and_probs = torch.topk(probs, 5) |
|
top_probs = top_tokens_and_probs.values.cpu().numpy().astype(float).tolist() |
|
top_token_ids = top_tokens_and_probs.indices.cpu().numpy().astype(int).tolist() |
|
|
|
self.top_token_ids_list.append(top_token_ids) |
|
self.top_probs_list.append(top_probs) |
|
|
|
probs = probs.cpu().numpy().flatten() |
|
self.last_probs = probs |
|
|
|
|
|
|
|
|
|
|
|
return scores |
|
|
|
|
|
|
|
ppl_logits_processor = None |
|
|
|
|
|
def logits_processor_modifier(logits_processor_list, input_ids): |
|
global ppl_logits_processor |
|
if params['active']: |
|
ppl_logits_processor = PerplexityLogits(verbose=params['verbose']) |
|
logits_processor_list.append(ppl_logits_processor) |
|
|
|
|
|
def output_modifier(text): |
|
global ppl_logits_processor |
|
|
|
|
|
if not params['active']: |
|
return text |
|
|
|
|
|
|
|
perplexities = ppl_logits_processor.perplexities_list[:-1] |
|
top_token_ids_list = ppl_logits_processor.top_token_ids_list[:-1] |
|
top_tokens_list = [[shared.tokenizer.decode(token_id) for token_id in top_token_ids[0]] for top_token_ids in top_token_ids_list] |
|
top_probs_list = ppl_logits_processor.top_probs_list[:-1] |
|
|
|
gen_token_ids = ppl_logits_processor.generated_token_ids[1:] |
|
gen_tokens = [shared.tokenizer.decode(token_id) for token_id in gen_token_ids] |
|
sel_probs = ppl_logits_processor.selected_probs[1:] |
|
|
|
end_part = '</div></div>' if params['probability_dropdown'] else '</span>' |
|
|
|
i = 0 |
|
for token, prob, ppl, top_tokens, top_probs in zip(gen_tokens, sel_probs, perplexities, top_tokens_list, top_probs_list): |
|
color = 'ffffff' |
|
if params['color_by_probability'] and params['color_by_perplexity']: |
|
color = probability_perplexity_color_scale(prob, ppl) |
|
elif params['color_by_perplexity']: |
|
color = perplexity_color_scale(ppl) |
|
elif params['color_by_probability']: |
|
color = probability_color_scale(prob) |
|
if token in text[i:]: |
|
if params['probability_dropdown']: |
|
text = text[:i] + text[i:].replace(token, add_dropdown_html(token, color, top_tokens, top_probs[0], ppl), 1) |
|
else: |
|
text = text[:i] + text[i:].replace(token, add_color_html(token, color), 1) |
|
i += text[i:].find(end_part) + len(end_part) |
|
|
|
|
|
print('Average perplexity:', round(np.mean(ppl_logits_processor.perplexities_list[:-1]), 4)) |
|
|
|
|
|
|
|
return text |
|
|
|
|
|
def probability_color_scale(prob): |
|
''' |
|
Green-yellow-red color scale |
|
''' |
|
|
|
rv = 0 |
|
gv = 0 |
|
if prob <= 0.5: |
|
rv = 'ff' |
|
gv = hex(int(255 * prob * 2))[2:] |
|
if len(gv) < 2: |
|
gv = '0' * (2 - len(gv)) + gv |
|
else: |
|
rv = hex(int(255 - 255 * (prob - 0.5) * 2))[2:] |
|
gv = 'ff' |
|
if len(rv) < 2: |
|
rv = '0' * (2 - len(rv)) + rv |
|
|
|
return rv + gv + '00' |
|
|
|
|
|
def perplexity_color_scale(ppl): |
|
''' |
|
Red component only, white for 0 perplexity (sorry if you're not in dark mode) |
|
''' |
|
value = hex(max(int(255.0 - params['ppl_scale'] * (float(ppl) - 1.0)), 0))[2:] |
|
if len(value) < 2: |
|
value = '0' * (2 - len(value)) + value |
|
|
|
return 'ff' + value + value |
|
|
|
|
|
def probability_perplexity_color_scale(prob, ppl): |
|
''' |
|
Green-yellow-red for probability and blue component for perplexity |
|
''' |
|
|
|
rv = 0 |
|
gv = 0 |
|
bv = hex(min(max(int(params['ppl_scale'] * (float(ppl) - 1.0)), 0), 255))[2:] |
|
if len(bv) < 2: |
|
bv = '0' * (2 - len(bv)) + bv |
|
|
|
if prob <= 0.5: |
|
rv = 'ff' |
|
gv = hex(int(255 * prob * 2))[2:] |
|
if len(gv) < 2: |
|
gv = '0' * (2 - len(gv)) + gv |
|
else: |
|
rv = hex(int(255 - 255 * (prob - 0.5) * 2))[2:] |
|
gv = 'ff' |
|
if len(rv) < 2: |
|
rv = '0' * (2 - len(rv)) + rv |
|
|
|
return rv + gv + bv |
|
|
|
|
|
def add_color_html(token, color): |
|
return f'<span style="color: #{color}">{token}</span>' |
|
|
|
|
|
|
|
|
|
|
|
|
|
def add_dropdown_html(token, color, top_tokens, top_probs, perplexity=0): |
|
html = f'<div class="hoverable"><span style="color: #{color}">{token}</span><div class="dropdown"><table class="dropdown-content"><tbody>' |
|
for token_option, prob in zip(top_tokens, top_probs): |
|
|
|
|
|
|
|
|
|
row_color = probability_color_scale(prob) |
|
row_class = ' class="selected"' if token_option == token else '' |
|
html += f'<tr{row_class}><td style="color: #{row_color}">{token_option}</td><td style="color: #{row_color}">{prob:.4f}</td></tr>' |
|
if perplexity != 0: |
|
ppl_color = perplexity_color_scale(perplexity) |
|
html += f'<tr><td>Perplexity:</td><td style="color: #{ppl_color}">{perplexity:.4f}</td></tr>' |
|
html += '</tbody></table></div></div>' |
|
return html |
|
|
|
|
|
def custom_css(): |
|
return """ |
|
.dropdown { |
|
display: none; |
|
position: absolute; |
|
z-index: 50; |
|
background-color: var(--block-background-fill); |
|
box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2); |
|
width: max-content; |
|
overflow: visible; |
|
padding: 5px; |
|
border-radius: 10px; |
|
border: 1px solid var(--border-color-primary); |
|
} |
|
|
|
.dropdown-content { |
|
border: none; |
|
z-index: 50; |
|
} |
|
|
|
.dropdown-content tr.selected { |
|
background-color: var(--block-label-background-fill); |
|
} |
|
|
|
.dropdown-content td { |
|
color: var(--body-text-color); |
|
} |
|
|
|
.hoverable { |
|
color: var(--body-text-color); |
|
position: relative; |
|
display: inline-block; |
|
overflow: visible; |
|
font-size: 15px; |
|
line-height: 1.75; |
|
margin: 0; |
|
padding: 0; |
|
} |
|
|
|
.hoverable:hover .dropdown { |
|
display: block; |
|
} |
|
|
|
pre { |
|
white-space: pre-wrap; |
|
} |
|
|
|
# TODO: This makes the hover menus extend outside the bounds of the chat area, which is good. |
|
# However, it also makes the scrollbar disappear, which is bad. |
|
# The scroll bar needs to still be present. So for now, we can't see dropdowns that extend past the edge of the chat area. |
|
#.chat { |
|
# overflow-y: auto; |
|
#} |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def convert_to_markdown(string): |
|
return '<pre>' + string + '</pre>' |
|
|
|
|
|
html_generator.convert_to_markdown = convert_to_markdown |
|
|
|
|
|
def ui(): |
|
def update_active_check(x): |
|
params.update({'active': x}) |
|
|
|
def update_color_by_ppl_check(x): |
|
params.update({'color_by_perplexity': x}) |
|
|
|
def update_color_by_prob_check(x): |
|
params.update({'color_by_probability': x}) |
|
|
|
def update_prob_dropdown_check(x): |
|
params.update({'probability_dropdown': x}) |
|
|
|
active_check = gradio.Checkbox(value=True, label="Compute probabilities and perplexity scores", info="Activate this extension. Note that this extension currently does not work with exllama or llama.cpp.") |
|
color_by_ppl_check = gradio.Checkbox(value=False, label="Color by perplexity", info="Higher perplexity is more red. If also showing probability, higher perplexity has more blue component.") |
|
color_by_prob_check = gradio.Checkbox(value=False, label="Color by probability", info="Green-yellow-red linear scale, with 100% green, 50% yellow, 0% red.") |
|
prob_dropdown_check = gradio.Checkbox(value=False, label="Probability dropdown", info="Hover over a token to show a dropdown of top token probabilities. Currently slightly buggy with whitespace between tokens.") |
|
|
|
active_check.change(update_active_check, active_check, None) |
|
color_by_ppl_check.change(update_color_by_ppl_check, color_by_ppl_check, None) |
|
color_by_prob_check.change(update_color_by_prob_check, color_by_prob_check, None) |
|
prob_dropdown_check.change(update_prob_dropdown_check, prob_dropdown_check, None) |
|
|