import gc import os import re import time import traceback from pathlib import Path import torch import transformers from accelerate import infer_auto_device_map, init_empty_weights from accelerate.utils import is_ccl_available, is_xpu_available from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer, BitsAndBytesConfig, GPTQConfig ) import modules.shared as shared from modules import RoPE, llama_attn_hijack, sampler_hijack from modules.logging_colors import logger from modules.models_settings import get_model_metadata transformers.logging.set_verbosity_error() local_rank = None if shared.args.deepspeed: import deepspeed from transformers.deepspeed import ( HfDeepSpeedConfig, is_deepspeed_zero3_enabled ) from modules.deepspeed_parameters import generate_ds_config # Distributed setup local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0")) world_size = int(os.getenv("WORLD_SIZE", "1")) if is_xpu_available() and is_ccl_available(): torch.xpu.set_device(local_rank) deepspeed.init_distributed(backend="ccl") else: torch.cuda.set_device(local_rank) deepspeed.init_distributed() ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir) dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration sampler_hijack.hijack_samplers() def load_model(model_name, loader=None): logger.info(f"Loading {model_name}...") t0 = time.time() shared.is_seq2seq = False load_func_map = { 'Transformers': huggingface_loader, 'AutoGPTQ': AutoGPTQ_loader, 'GPTQ-for-LLaMa': GPTQ_loader, 'llama.cpp': llamacpp_loader, 'llamacpp_HF': llamacpp_HF_loader, 'RWKV': RWKV_loader, 'ExLlama': ExLlama_loader, 'ExLlama_HF': ExLlama_HF_loader, 'ExLlamav2': ExLlamav2_loader, 'ExLlamav2_HF': ExLlamav2_HF_loader, 'ctransformers': ctransformers_loader, 'AutoAWQ': AutoAWQ_loader, } metadata = get_model_metadata(model_name) if loader is None: if shared.args.loader is not None: loader = shared.args.loader else: loader = metadata['loader'] if loader is None: logger.error('The path to the model does not exist. Exiting.') raise ValueError shared.args.loader = loader output = load_func_map[loader](model_name) if type(output) is tuple: model, tokenizer = output else: model = output if model is None: return None, None else: tokenizer = load_tokenizer(model_name, model) # Hijack attention with xformers if any((shared.args.xformers, shared.args.sdp_attention)): llama_attn_hijack.hijack_llama_attention() shared.settings.update({k: v for k, v in metadata.items() if k in shared.settings}) logger.info(f"Loaded the model in {(time.time()-t0):.2f} seconds.") return model, tokenizer def load_tokenizer(model_name, model): tokenizer = None path_to_model = Path(f"{shared.args.model_dir}/{model_name}/") if any(s in model_name.lower() for s in ['gpt-4chan', 'gpt4chan']) and Path(f"{shared.args.model_dir}/gpt-j-6B/").exists(): tokenizer = AutoTokenizer.from_pretrained(Path(f"{shared.args.model_dir}/gpt-j-6B/")) elif path_to_model.exists(): if shared.args.use_fast: logger.info('Loading the tokenizer with use_fast=True.') tokenizer = AutoTokenizer.from_pretrained( path_to_model, trust_remote_code=shared.args.trust_remote_code, use_fast=shared.args.use_fast ) return tokenizer def huggingface_loader(model_name): path_to_model = Path(f'{shared.args.model_dir}/{model_name}') params = { 'low_cpu_mem_usage': True, 'trust_remote_code': shared.args.trust_remote_code, 'torch_dtype': torch.bfloat16 if shared.args.bf16 else torch.float16, 'use_safetensors': True if shared.args.force_safetensors else None } if shared.args.use_flash_attention_2: params['use_flash_attention_2'] = True config = AutoConfig.from_pretrained(path_to_model, trust_remote_code=params['trust_remote_code']) if 'chatglm' in model_name.lower(): LoaderClass = AutoModel else: if config.to_dict().get('is_encoder_decoder', False): LoaderClass = AutoModelForSeq2SeqLM shared.is_seq2seq = True else: LoaderClass = AutoModelForCausalLM # Load the model in simple 16-bit mode by default if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.load_in_4bit, shared.args.auto_devices, shared.args.disk, shared.args.deepspeed, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.compress_pos_emb > 1, shared.args.alpha_value > 1, shared.args.disable_exllama]): model = LoaderClass.from_pretrained(path_to_model, **params) if torch.backends.mps.is_available(): device = torch.device('mps') model = model.to(device) elif is_xpu_available(): device = torch.device("xpu") model = model.to(device) else: model = model.cuda() # DeepSpeed ZeRO-3 elif shared.args.deepspeed: model = LoaderClass.from_pretrained(path_to_model, torch_dtype=params['torch_dtype']) model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0] model.module.eval() # Inference logger.info(f'DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}') # Load with quantization and/or offloading else: if not any((shared.args.cpu, torch.cuda.is_available(), is_xpu_available(), torch.backends.mps.is_available())): logger.warning('torch.cuda.is_available() and is_xpu_available() returned False. This means that no GPU has been detected. Falling back to CPU mode.') shared.args.cpu = True if shared.args.cpu: params['torch_dtype'] = torch.float32 else: params['device_map'] = 'auto' params['max_memory'] = get_max_memory_dict() if shared.args.load_in_4bit: # See https://github.com/huggingface/transformers/pull/23479/files # and https://huggingface.co/blog/4bit-transformers-bitsandbytes quantization_config_params = { 'load_in_4bit': True, 'bnb_4bit_compute_dtype': eval("torch.{}".format(shared.args.compute_dtype)) if shared.args.compute_dtype in ["bfloat16", "float16", "float32"] else None, 'bnb_4bit_quant_type': shared.args.quant_type, 'bnb_4bit_use_double_quant': shared.args.use_double_quant, } logger.info('Using the following 4-bit params: ' + str(quantization_config_params)) params['quantization_config'] = BitsAndBytesConfig(**quantization_config_params) elif shared.args.load_in_8bit: if any((shared.args.auto_devices, shared.args.gpu_memory)): params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True) else: params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True) if params['max_memory'] is not None: with init_empty_weights(): model = LoaderClass.from_config(config, trust_remote_code=params['trust_remote_code']) model.tie_weights() params['device_map'] = infer_auto_device_map( model, dtype=torch.int8, max_memory=params['max_memory'], no_split_module_classes=model._no_split_modules ) if shared.args.disk: params['offload_folder'] = shared.args.disk_cache_dir if shared.args.disable_exllama: try: gptq_config = GPTQConfig(bits=config.quantization_config.get('bits', 4), disable_exllama=True) params['quantization_config'] = gptq_config logger.info('Loading with ExLlama kernel disabled.') except: exc = traceback.format_exc() logger.error('Failed to disable exllama. Does the config.json for this model contain the necessary quantization info?') print(exc) if shared.args.compress_pos_emb > 1: params['rope_scaling'] = {'type': 'linear', 'factor': shared.args.compress_pos_emb} elif shared.args.alpha_value > 1: params['rope_scaling'] = {'type': 'dynamic', 'factor': RoPE.get_alpha_value(shared.args.alpha_value, shared.args.rope_freq_base)} model = LoaderClass.from_pretrained(path_to_model, **params) return model def llamacpp_loader(model_name): from modules.llamacpp_model import LlamaCppModel path = Path(f'{shared.args.model_dir}/{model_name}') if path.is_file(): model_file = path else: model_file = list(Path(f'{shared.args.model_dir}/{model_name}').glob('*.gguf'))[0] logger.info(f"llama.cpp weights detected: {model_file}") model, tokenizer = LlamaCppModel.from_pretrained(model_file) return model, tokenizer def llamacpp_HF_loader(model_name): from modules.llamacpp_hf import LlamacppHF for fname in [model_name, "oobabooga_llama-tokenizer", "llama-tokenizer"]: path = Path(f'{shared.args.model_dir}/{fname}') if all((path / file).exists() for file in ['tokenizer_config.json', 'special_tokens_map.json', 'tokenizer.model']): logger.info(f'Using tokenizer from: {path}') break else: logger.error("Could not load the model because a tokenizer in transformers format was not found. Please download oobabooga/llama-tokenizer.") return None, None if shared.args.use_fast: logger.info('Loading the tokenizer with use_fast=True.') tokenizer = AutoTokenizer.from_pretrained( path, trust_remote_code=shared.args.trust_remote_code, use_fast=shared.args.use_fast ) model = LlamacppHF.from_pretrained(model_name) return model, tokenizer def ctransformers_loader(model_name): from modules.ctransformers_model import CtransformersModel path = Path(f'{shared.args.model_dir}/{model_name}') ctrans = CtransformersModel() if ctrans.model_type_is_auto(): model_file = path else: if path.is_file(): model_file = path else: entries = Path(f'{shared.args.model_dir}/{model_name}') gguf = list(entries.glob('*.gguf')) bin = list(entries.glob('*.bin')) if len(gguf) > 0: model_file = gguf[0] elif len(bin) > 0: model_file = bin[0] else: logger.error("Could not find a model for ctransformers.") return None, None logger.info(f'ctransformers weights detected: {model_file}') model, tokenizer = ctrans.from_pretrained(model_file) return model, tokenizer def AutoAWQ_loader(model_name): from awq import AutoAWQForCausalLM model_dir = Path(f'{shared.args.model_dir}/{model_name}') model = AutoAWQForCausalLM.from_quantized( quant_path=model_dir, max_new_tokens=shared.args.max_seq_len, trust_remote_code=shared.args.trust_remote_code, fuse_layers=not shared.args.no_inject_fused_attention, max_memory=get_max_memory_dict(), batch_size=1, safetensors=any(model_dir.glob('*.safetensors')), ) return model def GPTQ_loader(model_name): # Monkey patch if shared.args.monkey_patch: logger.warning("Applying the monkey patch for using LoRAs with GPTQ models. It may cause undefined behavior outside its intended scope.") from modules.monkey_patch_gptq_lora import load_model_llama model, _ = load_model_llama(model_name) # No monkey patch else: import modules.GPTQ_loader model = modules.GPTQ_loader.load_quantized(model_name) return model def AutoGPTQ_loader(model_name): import modules.AutoGPTQ_loader return modules.AutoGPTQ_loader.load_quantized(model_name) def ExLlama_loader(model_name): from modules.exllama import ExllamaModel model, tokenizer = ExllamaModel.from_pretrained(model_name) return model, tokenizer def ExLlama_HF_loader(model_name): from modules.exllama_hf import ExllamaHF return ExllamaHF.from_pretrained(model_name) def ExLlamav2_loader(model_name): from modules.exllamav2 import Exllamav2Model model, tokenizer = Exllamav2Model.from_pretrained(model_name) return model, tokenizer def ExLlamav2_HF_loader(model_name): from modules.exllamav2_hf import Exllamav2HF return Exllamav2HF.from_pretrained(model_name) def RWKV_loader(model_name): ''' This loader is not currently maintained as RWKV can now be loaded through the transformers library. ''' from modules.RWKV import RWKVModel, RWKVTokenizer model = RWKVModel.from_pretrained( Path(f'{shared.args.model_dir}/{model_name}'), dtype="fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16", device="cpu" if shared.args.cpu else "xpu" if is_xpu_available() else "cuda" ) tokenizer = RWKVTokenizer.from_pretrained(Path(shared.args.model_dir)) return model, tokenizer def get_max_memory_dict(): max_memory = {} if shared.args.gpu_memory: memory_map = list(map(lambda x: x.strip(), shared.args.gpu_memory)) for i in range(len(memory_map)): max_memory[i] = f'{memory_map[i]}GiB' if not re.match('.*ib$', memory_map[i].lower()) else memory_map[i] max_cpu_memory = shared.args.cpu_memory.strip() if shared.args.cpu_memory is not None else '99GiB' max_memory['cpu'] = f'{max_cpu_memory}GiB' if not re.match('.*ib$', max_cpu_memory.lower()) else max_cpu_memory # If --auto-devices is provided standalone, try to get a reasonable value # for the maximum memory of device :0 elif shared.args.auto_devices: if is_xpu_available(): total_mem = (torch.xpu.get_device_properties(0).total_memory / (1024 * 1024)) else: total_mem = (torch.cuda.get_device_properties(0).total_memory / (1024 * 1024)) suggestion = round((total_mem - 1000) / 1000) * 1000 if total_mem - suggestion < 800: suggestion -= 1000 suggestion = int(round(suggestion / 1000)) logger.warning(f"Auto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors. You can manually set other values.") max_memory = {0: f'{suggestion}GiB', 'cpu': f'{shared.args.cpu_memory or 99}GiB'} return max_memory if len(max_memory) > 0 else None def clear_torch_cache(): gc.collect() if not shared.args.cpu: if is_xpu_available(): torch.xpu.empty_cache() else: torch.cuda.empty_cache() def unload_model(): shared.model = shared.tokenizer = None shared.lora_names = [] shared.model_dirty_from_training = False clear_torch_cache() def reload_model(): unload_model() shared.model, shared.tokenizer = load_model(shared.model_name)