File size: 35,263 Bytes
5641073
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
"use strict";
/**
 * @author jdiaz5513
 */
Object.defineProperty(exports, "__esModule", { value: true });
exports.trackPointerAllocation = exports.copyFromStruct = exports.copyFromList = exports.validate = exports.setStructPointer = exports.setListPointer = exports.setInterfacePointer = exports.setFarPointer = exports.relocateTo = exports.isNull = exports.isDoubleFar = exports.initPointer = exports.getTargetStructSize = exports.getTargetPointerType = exports.getTargetListLength = exports.getTargetListElementSize = exports.getTargetCompositeListSize = exports.getTargetCompositeListTag = exports.getStructSize = exports.getStructPointerLength = exports.getStructDataWords = exports.getPointerType = exports.getOffsetWords = exports.getListLength = exports.getListElementSize = exports.getFarSegmentId = exports.getContent = exports.getCapabilityId = exports.followFars = exports.followFar = exports.erasePointer = exports.erase = exports.copyFrom = exports.add = exports.getListElementByteLength = exports.getListByteLength = exports.dump = exports.disown = exports.adopt = exports.Pointer = void 0;
const tslib_1 = require("tslib");
const debug_1 = tslib_1.__importDefault(require("debug"));
const constants_1 = require("../../constants");
const util_1 = require("../../util");
const list_element_size_1 = require("../list-element-size");
const object_size_1 = require("../object-size");
const orphan_1 = require("./orphan");
const pointer_allocation_result_1 = require("./pointer-allocation-result");
const pointer_type_1 = require("./pointer-type");
const errors_1 = require("../../errors");
const trace = debug_1.default("capnp:pointer");
trace("load");
/**
 * A pointer referencing a single byte location in a segment. This is typically used for Cap'n Proto pointers, but is
 * also sometimes used to reference an offset to a pointer's content or tag words.
 *
 * @export
 * @class Pointer
 */
class Pointer {
    constructor(segment, byteOffset, depthLimit = constants_1.MAX_DEPTH) {
        this._capnp = { compositeList: false, depthLimit };
        this.segment = segment;
        this.byteOffset = byteOffset;
        if (depthLimit === 0) {
            throw new Error(util_1.format(errors_1.PTR_DEPTH_LIMIT_EXCEEDED, this));
        }
        // Make sure we keep track of all pointer allocations; there's a limit per message (prevent DoS).
        trackPointerAllocation(segment.message, this);
        // NOTE: It's okay to have a pointer to the end of the segment; you'll see this when creating pointers to the
        // beginning of the content of a newly-allocated composite list with zero elements. Unlike other language
        // implementations buffer over/underflows are not a big issue since all buffer access is bounds checked in native
        // code anyway.
        if (byteOffset < 0 || byteOffset > segment.byteLength) {
            throw new Error(util_1.format(errors_1.PTR_OFFSET_OUT_OF_BOUNDS, byteOffset));
        }
        trace("new %s", this);
    }
    toString() {
        return util_1.format("Pointer_%d@%a,%s,limit:%x", this.segment.id, this.byteOffset, dump(this), this._capnp.depthLimit);
    }
}
exports.Pointer = Pointer;
Pointer.adopt = adopt;
Pointer.copyFrom = copyFrom;
Pointer.disown = disown;
Pointer.dump = dump;
Pointer.isNull = isNull;
Pointer._capnp = {
    displayName: "Pointer",
};
/**
 * Adopt an orphaned pointer, making the pointer point to the orphaned content without copying it.
 *
 * @param {Orphan<Pointer>} src The orphan to adopt.
 * @param {Pointer} p The the pointer to adopt into.
 * @returns {void}
 */
function adopt(src, p) {
    src._moveTo(p);
}
exports.adopt = adopt;
/**
 * Convert a pointer to an Orphan, zeroing out the pointer and leaving its content untouched. If the content is no
 * longer needed, call `disown()` on the orphaned pointer to erase the contents as well.
 *
 * Call `adopt()` on the orphan with the new target pointer location to move it back into the message; the orphan
 * object is then invalidated after adoption (can only adopt once!).
 *
 * @param {T} p The pointer to turn into an Orphan.
 * @returns {Orphan<T>} An orphaned pointer.
 */
function disown(p) {
    return new orphan_1.Orphan(p);
}
exports.disown = disown;
function dump(p) {
    return util_1.bufferToHex(p.segment.buffer.slice(p.byteOffset, p.byteOffset + 8));
}
exports.dump = dump;
/**
 * Get the total number of bytes required to hold a list of the provided size with the given length, rounded up to the
 * nearest word.
 *
 * @param {ListElementSize} elementSize A number describing the size of the list elements.
 * @param {number} length The length of the list.
 * @param {ObjectSize} [compositeSize] The size of each element in a composite list; required if
 * `elementSize === ListElementSize.COMPOSITE`.
 * @returns {number} The number of bytes required to hold an element of that size, or `NaN` if that is undefined.
 */
function getListByteLength(elementSize, length, compositeSize) {
    switch (elementSize) {
        case list_element_size_1.ListElementSize.BIT:
            return util_1.padToWord((length + 7) >>> 3);
        case list_element_size_1.ListElementSize.BYTE:
        case list_element_size_1.ListElementSize.BYTE_2:
        case list_element_size_1.ListElementSize.BYTE_4:
        case list_element_size_1.ListElementSize.BYTE_8:
        case list_element_size_1.ListElementSize.POINTER:
        case list_element_size_1.ListElementSize.VOID:
            return util_1.padToWord(getListElementByteLength(elementSize) * length);
        /* istanbul ignore next */
        case list_element_size_1.ListElementSize.COMPOSITE:
            if (compositeSize === undefined) {
                throw new Error(util_1.format(errors_1.PTR_INVALID_LIST_SIZE, NaN));
            }
            return length * util_1.padToWord(object_size_1.getByteLength(compositeSize));
        /* istanbul ignore next */
        default:
            throw new Error(errors_1.PTR_INVALID_LIST_SIZE);
    }
}
exports.getListByteLength = getListByteLength;
/**
 * Get the number of bytes required to hold a list element of the provided size. `COMPOSITE` elements do not have a
 * fixed size, and `BIT` elements are packed into exactly a single bit, so these both return `NaN`.
 *
 * @param {ListElementSize} elementSize A number describing the size of the list elements.
 * @returns {number} The number of bytes required to hold an element of that size, or `NaN` if that is undefined.
 */
function getListElementByteLength(elementSize) {
    switch (elementSize) {
        /* istanbul ignore next */
        case list_element_size_1.ListElementSize.BIT:
            return NaN;
        case list_element_size_1.ListElementSize.BYTE:
            return 1;
        case list_element_size_1.ListElementSize.BYTE_2:
            return 2;
        case list_element_size_1.ListElementSize.BYTE_4:
            return 4;
        case list_element_size_1.ListElementSize.BYTE_8:
        case list_element_size_1.ListElementSize.POINTER:
            return 8;
        /* istanbul ignore next */
        case list_element_size_1.ListElementSize.COMPOSITE:
            // Caller has to figure it out based on the tag word.
            return NaN;
        /* istanbul ignore next */
        case list_element_size_1.ListElementSize.VOID:
            return 0;
        /* istanbul ignore next */
        default:
            throw new Error(util_1.format(errors_1.PTR_INVALID_LIST_SIZE, elementSize));
    }
}
exports.getListElementByteLength = getListElementByteLength;
/**
 * Add an offset to the pointer's offset and return a new Pointer for that address.
 *
 * @param {number} offset The number of bytes to add to the offset.
 * @param {Pointer} p The pointer to add from.
 * @returns {Pointer} A new pointer to the address.
 */
function add(offset, p) {
    return new Pointer(p.segment, p.byteOffset + offset, p._capnp.depthLimit);
}
exports.add = add;
/**
 * Replace a pointer with a deep copy of the pointer at `src` and all of its contents.
 *
 * @param {Pointer} src The pointer to copy.
 * @param {Pointer} p The pointer to copy into.
 * @returns {void}
 */
function copyFrom(src, p) {
    // If the pointer is the same then this is a noop.
    if (p.segment === src.segment && p.byteOffset === src.byteOffset) {
        trace("ignoring copy operation from identical pointer %s", src);
        return;
    }
    // Make sure we erase this pointer's contents before moving on. If src is null, that's all we do.
    erase(p); // noop if null
    if (isNull(src))
        return;
    switch (getTargetPointerType(src)) {
        case pointer_type_1.PointerType.STRUCT:
            copyFromStruct(src, p);
            break;
        case pointer_type_1.PointerType.LIST:
            copyFromList(src, p);
            break;
        /* istanbul ignore next */
        default:
            throw new Error(util_1.format(errors_1.PTR_INVALID_POINTER_TYPE, getTargetPointerType(p)));
    }
}
exports.copyFrom = copyFrom;
/**
 * Recursively erase a pointer, any far pointers/landing pads/tag words, and the content it points to.
 *
 * Note that this will leave "holes" of zeroes in the message, since the space cannot be reclaimed. With packing this
 * will have a negligible effect on the final message size.
 *
 * FIXME: This may need protection against infinite recursion...
 *
 * @param {Pointer} p The pointer to erase.
 * @returns {void}
 */
function erase(p) {
    if (isNull(p))
        return;
    // First deal with the contents.
    let c;
    switch (getTargetPointerType(p)) {
        case pointer_type_1.PointerType.STRUCT: {
            const size = getTargetStructSize(p);
            c = getContent(p);
            // Wipe the data section.
            c.segment.fillZeroWords(c.byteOffset, size.dataByteLength / 8);
            // Iterate over all the pointers and nuke them.
            for (let i = 0; i < size.pointerLength; i++) {
                erase(add(i * 8, c));
            }
            break;
        }
        case pointer_type_1.PointerType.LIST: {
            const elementSize = getTargetListElementSize(p);
            const length = getTargetListLength(p);
            let contentWords = util_1.padToWord(length * getListElementByteLength(elementSize));
            c = getContent(p);
            if (elementSize === list_element_size_1.ListElementSize.POINTER) {
                for (let i = 0; i < length; i++) {
                    erase(new Pointer(c.segment, c.byteOffset + i * 8, p._capnp.depthLimit - 1));
                }
                // Calling erase on each pointer takes care of the content, nothing left to do here.
                break;
            }
            else if (elementSize === list_element_size_1.ListElementSize.COMPOSITE) {
                // Read some stuff from the tag word.
                const tag = add(-8, c);
                const compositeSize = getStructSize(tag);
                const compositeByteLength = object_size_1.getByteLength(compositeSize);
                contentWords = getOffsetWords(tag);
                // Kill the tag word.
                c.segment.setWordZero(c.byteOffset - 8);
                // Recursively erase each pointer.
                for (let i = 0; i < length; i++) {
                    for (let j = 0; j < compositeSize.pointerLength; j++) {
                        erase(new Pointer(c.segment, c.byteOffset + i * compositeByteLength + j * 8, p._capnp.depthLimit - 1));
                    }
                }
            }
            c.segment.fillZeroWords(c.byteOffset, contentWords);
            break;
        }
        case pointer_type_1.PointerType.OTHER:
            // No content.
            break;
        default:
            throw new Error(util_1.format(errors_1.PTR_INVALID_POINTER_TYPE, getTargetPointerType(p)));
    }
    erasePointer(p);
}
exports.erase = erase;
/**
 * Set the pointer (and far pointer landing pads, if applicable) to zero. Does not touch the pointer's content.
 *
 * @param {Pointer} p The pointer to erase.
 * @returns {void}
 */
function erasePointer(p) {
    if (getPointerType(p) === pointer_type_1.PointerType.FAR) {
        const landingPad = followFar(p);
        if (isDoubleFar(p)) {
            // Kill the double-far tag word.
            landingPad.segment.setWordZero(landingPad.byteOffset + 8);
        }
        // Kill the landing pad.
        landingPad.segment.setWordZero(landingPad.byteOffset);
    }
    // Finally! Kill the pointer itself...
    p.segment.setWordZero(p.byteOffset);
}
exports.erasePointer = erasePointer;
/**
 * Interpret the pointer as a far pointer, returning its target segment and offset.
 *
 * @param {Pointer} p The pointer to read from.
 * @returns {Pointer} A pointer to the far target.
 */
function followFar(p) {
    const targetSegment = p.segment.message.getSegment(p.segment.getUint32(p.byteOffset + 4));
    const targetWordOffset = p.segment.getUint32(p.byteOffset) >>> 3;
    return new Pointer(targetSegment, targetWordOffset * 8, p._capnp.depthLimit - 1);
}
exports.followFar = followFar;
/**
 * If the pointer address references a far pointer, follow it to the location where the actual pointer data is written.
 * Otherwise, returns the pointer unmodified.
 *
 * @param {Pointer} p The pointer to read from.
 * @returns {Pointer} A new pointer representing the target location, or `p` if it is not a far pointer.
 */
function followFars(p) {
    if (getPointerType(p) === pointer_type_1.PointerType.FAR) {
        const landingPad = followFar(p);
        if (isDoubleFar(p))
            landingPad.byteOffset += 8;
        return landingPad;
    }
    return p;
}
exports.followFars = followFars;
function getCapabilityId(p) {
    return p.segment.getUint32(p.byteOffset + 4);
}
exports.getCapabilityId = getCapabilityId;
function isCompositeList(p) {
    return getTargetPointerType(p) === pointer_type_1.PointerType.LIST && getTargetListElementSize(p) === list_element_size_1.ListElementSize.COMPOSITE;
}
/**
 * Obtain the location of the pointer's content, following far pointers as needed.
 * If the pointer is a struct pointer and `compositeIndex` is set, it will be offset by a multiple of the struct's size.
 *
 * @param {Pointer} p The pointer to read from.
 * @param {boolean} [ignoreCompositeIndex] If true, will not follow the composite struct pointer's composite index and
 * instead return a pointer to the parent list's contents (also the beginning of the first struct).
 * @returns {Pointer} A pointer to the beginning of the pointer's content.
 */
function getContent(p, ignoreCompositeIndex) {
    let c;
    if (isDoubleFar(p)) {
        const landingPad = followFar(p);
        c = new Pointer(p.segment.message.getSegment(getFarSegmentId(landingPad)), getOffsetWords(landingPad) * 8);
    }
    else {
        const target = followFars(p);
        c = new Pointer(target.segment, target.byteOffset + 8 + getOffsetWords(target) * 8);
    }
    if (isCompositeList(p))
        c.byteOffset += 8;
    if (!ignoreCompositeIndex && p._capnp.compositeIndex !== undefined) {
        // Seek backwards by one word so we can read the struct size off the tag word.
        c.byteOffset -= 8;
        // Seek ahead by `compositeIndex` multiples of the struct's total size.
        c.byteOffset += 8 + p._capnp.compositeIndex * object_size_1.getByteLength(object_size_1.padToWord(getStructSize(c)));
    }
    return c;
}
exports.getContent = getContent;
/**
 * Read the target segment ID from a far pointer.
 *
 * @param {Pointer} p The pointer to read from.
 * @returns {number} The target segment ID.
 */
function getFarSegmentId(p) {
    return p.segment.getUint32(p.byteOffset + 4);
}
exports.getFarSegmentId = getFarSegmentId;
/**
 * Get a number indicating the size of the list's elements.
 *
 * @param {Pointer} p The pointer to read from.
 * @returns {ListElementSize} The size of the list's elements.
 */
function getListElementSize(p) {
    return p.segment.getUint32(p.byteOffset + 4) & constants_1.LIST_SIZE_MASK;
}
exports.getListElementSize = getListElementSize;
/**
 * Get the number of elements in a list pointer. For composite lists, it instead represents the total number of words in
 * the list (not counting the tag word).
 *
 * This method does **not** attempt to distinguish between composite and non-composite lists. To get the correct
 * length for composite lists use `getTargetListLength()` instead.
 *
 * @param {Pointer} p The pointer to read from.
 * @returns {number} The length of the list, or total number of words for composite lists.
 */
function getListLength(p) {
    return p.segment.getUint32(p.byteOffset + 4) >>> 3;
}
exports.getListLength = getListLength;
/**
 * Get the offset (in words) from the end of a pointer to the start of its content. For struct pointers, this is the
 * beginning of the data section, and for list pointers it is the location of the first element. The value should
 * always be zero for interface pointers.
 *
 * @param {Pointer} p The pointer to read from.
 * @returns {number} The offset, in words, from the end of the pointer to the start of the data section.
 */
function getOffsetWords(p) {
    const o = p.segment.getInt32(p.byteOffset);
    // Far pointers only have 29 offset bits.
    return o & 2 ? o >> 3 : o >> 2;
}
exports.getOffsetWords = getOffsetWords;
/**
 * Look up the pointer's type.
 *
 * @param {Pointer} p The pointer to read from.
 * @returns {PointerType} The type of pointer.
 */
function getPointerType(p) {
    return p.segment.getUint32(p.byteOffset) & constants_1.POINTER_TYPE_MASK;
}
exports.getPointerType = getPointerType;
/**
 * Read the number of data words from this struct pointer.
 *
 * @param {Pointer} p The pointer to read from.
 * @returns {number} The number of data words in the struct.
 */
function getStructDataWords(p) {
    return p.segment.getUint16(p.byteOffset + 4);
}
exports.getStructDataWords = getStructDataWords;
/**
 * Read the number of pointers contained in this struct pointer.
 *
 * @param {Pointer} p The pointer to read from.
 * @returns {number} The number of pointers in this struct.
 */
function getStructPointerLength(p) {
    return p.segment.getUint16(p.byteOffset + 6);
}
exports.getStructPointerLength = getStructPointerLength;
/**
 * Get an object describing this struct pointer's size.
 *
 * @param {Pointer} p The pointer to read from.
 * @returns {ObjectSize} The size of the struct.
 */
function getStructSize(p) {
    return new object_size_1.ObjectSize(getStructDataWords(p) * 8, getStructPointerLength(p));
}
exports.getStructSize = getStructSize;
/**
 * Get a pointer to this pointer's composite list tag word, following far pointers as needed.
 *
 * @param {Pointer} p The pointer to read from.
 * @returns {Pointer} A pointer to the list's composite tag word.
 */
function getTargetCompositeListTag(p) {
    const c = getContent(p);
    // The composite list tag is always one word before the content.
    c.byteOffset -= 8;
    return c;
}
exports.getTargetCompositeListTag = getTargetCompositeListTag;
/**
 * Get the object size for the target composite list, following far pointers as needed.
 *
 * @param {Pointer} p The pointer to read from.
 * @returns {ObjectSize} An object describing the size of each struct in the list.
 */
function getTargetCompositeListSize(p) {
    return getStructSize(getTargetCompositeListTag(p));
}
exports.getTargetCompositeListSize = getTargetCompositeListSize;
/**
 * Get the size of the list elements referenced by this pointer, following far pointers if necessary.
 *
 * @param {Pointer} p The pointer to read from.
 * @returns {ListElementSize} The size of the elements in the list.
 */
function getTargetListElementSize(p) {
    return getListElementSize(followFars(p));
}
exports.getTargetListElementSize = getTargetListElementSize;
/**
 * Get the length of the list referenced by this pointer, following far pointers if necessary. If the list is a
 * composite list, it will look up the tag word and read the length from there.
 *
 * @param {Pointer} p The pointer to read from.
 * @returns {number} The number of elements in the list.
 */
function getTargetListLength(p) {
    const t = followFars(p);
    if (getListElementSize(t) === list_element_size_1.ListElementSize.COMPOSITE) {
        // The content is prefixed by a tag word; it's a struct pointer whose offset contains the list's length.
        return getOffsetWords(getTargetCompositeListTag(p));
    }
    return getListLength(t);
}
exports.getTargetListLength = getTargetListLength;
/**
 * Get the type of a pointer, following far pointers if necessary. For non-far pointers this is equivalent to calling
 * `getPointerType()`.
 *
 * The target of a far pointer can never be another far pointer, and this method will throw if such a situation is
 * encountered.
 *
 * @param {Pointer} p The pointer to read from.
 * @returns {PointerType} The type of pointer referenced by this pointer.
 */
function getTargetPointerType(p) {
    const t = getPointerType(followFars(p));
    if (t === pointer_type_1.PointerType.FAR)
        throw new Error(util_1.format(errors_1.PTR_INVALID_FAR_TARGET, p));
    return t;
}
exports.getTargetPointerType = getTargetPointerType;
/**
 * Get the size of the struct referenced by a pointer, following far pointers if necessary.
 *
 * @param {Pointer} p The poiner to read from.
 * @returns {ObjectSize} The size of the struct referenced by this pointer.
 */
function getTargetStructSize(p) {
    return getStructSize(followFars(p));
}
exports.getTargetStructSize = getTargetStructSize;
/**
 * Initialize a pointer to point at the data in the content segment. If the content segment is not the same as the
 * pointer's segment, this will allocate and write far pointers as needed. Nothing is written otherwise.
 *
 * The return value includes a pointer to write the pointer's actual data to (the eventual far target), and the offset
 * value (in words) to use for that pointer. In the case of double-far pointers this offset will always be zero.
 *
 * @param {Segment} contentSegment The segment containing this pointer's content.
 * @param {number} contentOffset The offset within the content segment for the beginning of this pointer's content.
 * @param {Pointer} p The pointer to initialize.
 * @returns {PointerAllocationResult} An object containing a pointer (where the pointer data should be written), and
 * the value to use as the offset for that pointer.
 */
function initPointer(contentSegment, contentOffset, p) {
    if (p.segment !== contentSegment) {
        // Need a far pointer.
        trace("Initializing far pointer %s -> %s.", p, contentSegment);
        if (!contentSegment.hasCapacity(8)) {
            // GAH! Not enough space in the content segment for a landing pad so we need a double far pointer.
            const landingPad = p.segment.allocate(16);
            trace("GAH! Initializing double-far pointer in %s from %s -> %s.", p, contentSegment, landingPad);
            setFarPointer(true, landingPad.byteOffset / 8, landingPad.segment.id, p);
            setFarPointer(false, contentOffset / 8, contentSegment.id, landingPad);
            landingPad.byteOffset += 8;
            return new pointer_allocation_result_1.PointerAllocationResult(landingPad, 0);
        }
        // Allocate a far pointer landing pad in the target segment.
        const landingPad = contentSegment.allocate(8);
        if (landingPad.segment.id !== contentSegment.id) {
            throw new Error(errors_1.INVARIANT_UNREACHABLE_CODE);
        }
        setFarPointer(false, landingPad.byteOffset / 8, landingPad.segment.id, p);
        return new pointer_allocation_result_1.PointerAllocationResult(landingPad, (contentOffset - landingPad.byteOffset - 8) / 8);
    }
    trace("Initializing intra-segment pointer %s -> %a.", p, contentOffset);
    return new pointer_allocation_result_1.PointerAllocationResult(p, (contentOffset - p.byteOffset - 8) / 8);
}
exports.initPointer = initPointer;
/**
 * Check if the pointer is a double-far pointer.
 *
 * @param {Pointer} p The pointer to read from.
 * @returns {boolean} `true` if it is a double-far pointer, `false` otherwise.
 */
function isDoubleFar(p) {
    return getPointerType(p) === pointer_type_1.PointerType.FAR && (p.segment.getUint32(p.byteOffset) & constants_1.POINTER_DOUBLE_FAR_MASK) !== 0;
}
exports.isDoubleFar = isDoubleFar;
/**
 * Quickly check to see if the pointer is "null". A "null" pointer is a zero word, equivalent to an empty struct
 * pointer.
 *
 * @param {Pointer} p The pointer to read from.
 * @returns {boolean} `true` if the pointer is "null".
 */
function isNull(p) {
    return p.segment.isWordZero(p.byteOffset);
}
exports.isNull = isNull;
/**
 * Relocate a pointer to the given destination, ensuring that it points to the same content. This will create far
 * pointers as needed if the content is in a different segment than the destination. After the relocation the source
 * pointer will be erased and is no longer valid.
 *
 * @param {Pointer} dst The desired location for the `src` pointer. Any existing contents will be erased before
 * relocating!
 * @param {Pointer} src The pointer to relocate.
 * @returns {void}
 */
function relocateTo(dst, src) {
    const t = followFars(src);
    const lo = t.segment.getUint8(t.byteOffset) & 0x03; // discard the offset
    const hi = t.segment.getUint32(t.byteOffset + 4);
    // Make sure anything dst was pointing to is wiped out.
    erase(dst);
    const res = initPointer(t.segment, t.byteOffset + 8 + getOffsetWords(t) * 8, dst);
    // Keep the low 2 bits and write the new offset.
    res.pointer.segment.setUint32(res.pointer.byteOffset, lo | (res.offsetWords << 2));
    // Keep the high 32 bits intact.
    res.pointer.segment.setUint32(res.pointer.byteOffset + 4, hi);
    erasePointer(src);
}
exports.relocateTo = relocateTo;
/**
 * Write a far pointer.
 *
 * @param {boolean} doubleFar Set to `true` if this is a double far pointer.
 * @param {number} offsetWords The offset, in words, to the target pointer.
 * @param {number} segmentId The segment the target pointer is located in.
 * @param {Pointer} p The pointer to write to.
 * @returns {void}
 */
function setFarPointer(doubleFar, offsetWords, segmentId, p) {
    const A = pointer_type_1.PointerType.FAR;
    const B = doubleFar ? 1 : 0;
    const C = offsetWords;
    const D = segmentId;
    p.segment.setUint32(p.byteOffset, A | (B << 2) | (C << 3));
    p.segment.setUint32(p.byteOffset + 4, D);
}
exports.setFarPointer = setFarPointer;
/**
 * Write a raw interface pointer.
 *
 * @param {number} capId The capability ID.
 * @param {Pointer} p The pointer to write to.
 * @returns {void}
 */
function setInterfacePointer(capId, p) {
    p.segment.setUint32(p.byteOffset, pointer_type_1.PointerType.OTHER);
    p.segment.setUint32(p.byteOffset + 4, capId);
}
exports.setInterfacePointer = setInterfacePointer;
/**
 * Write a raw list pointer.
 *
 * @param {number} offsetWords The number of words from the end of this pointer to the beginning of the list content.
 * @param {ListElementSize} size The size of each element in the list.
 * @param {number} length The number of elements in the list.
 * @param {Pointer} p The pointer to write to.
 * @param {ObjectSize} [compositeSize] For composite lists this describes the size of each element in this list. This
 * is required for composite lists.
 * @returns {void}
 */
function setListPointer(offsetWords, size, length, p, compositeSize) {
    const A = pointer_type_1.PointerType.LIST;
    const B = offsetWords;
    const C = size;
    let D = length;
    if (size === list_element_size_1.ListElementSize.COMPOSITE) {
        if (compositeSize === undefined) {
            throw new TypeError(errors_1.TYPE_COMPOSITE_SIZE_UNDEFINED);
        }
        D *= object_size_1.getWordLength(compositeSize);
    }
    p.segment.setUint32(p.byteOffset, A | (B << 2));
    p.segment.setUint32(p.byteOffset + 4, C | (D << 3));
}
exports.setListPointer = setListPointer;
/**
 * Write a raw struct pointer.
 *
 * @param {number} offsetWords The number of words from the end of this pointer to the beginning of the struct's data
 * section.
 * @param {ObjectSize} size An object describing the size of the struct.
 * @param {Pointer} p The pointer to write to.
 * @returns {void}
 */
function setStructPointer(offsetWords, size, p) {
    const A = pointer_type_1.PointerType.STRUCT;
    const B = offsetWords;
    const C = object_size_1.getDataWordLength(size);
    const D = size.pointerLength;
    p.segment.setUint32(p.byteOffset, A | (B << 2));
    p.segment.setUint16(p.byteOffset + 4, C);
    p.segment.setUint16(p.byteOffset + 6, D);
}
exports.setStructPointer = setStructPointer;
/**
 * Read some bits off a pointer to make sure it has the right pointer data.
 *
 * @param {PointerType} pointerType The expected pointer type.
 * @param {Pointer} p The pointer to validate.
 * @param {ListElementSize} [elementSize] For list pointers, the expected element size. Leave this
 * undefined for struct pointers.
 * @returns {void}
 */
function validate(pointerType, p, elementSize) {
    if (isNull(p))
        return;
    const t = followFars(p);
    // Check the pointer type.
    const A = t.segment.getUint32(t.byteOffset) & constants_1.POINTER_TYPE_MASK;
    if (A !== pointerType) {
        throw new Error(util_1.format(errors_1.PTR_WRONG_POINTER_TYPE, p, pointerType));
    }
    // Check the list element size, if provided.
    if (elementSize !== undefined) {
        const C = t.segment.getUint32(t.byteOffset + 4) & constants_1.LIST_SIZE_MASK;
        if (C !== elementSize) {
            throw new Error(util_1.format(errors_1.PTR_WRONG_LIST_TYPE, p, list_element_size_1.ListElementSize[elementSize]));
        }
    }
}
exports.validate = validate;
function copyFromList(src, dst) {
    if (dst._capnp.depthLimit <= 0)
        throw new Error(errors_1.PTR_DEPTH_LIMIT_EXCEEDED);
    const srcContent = getContent(src);
    const srcElementSize = getTargetListElementSize(src);
    const srcLength = getTargetListLength(src);
    let srcCompositeSize;
    let srcStructByteLength;
    let dstContent;
    if (srcElementSize === list_element_size_1.ListElementSize.POINTER) {
        dstContent = dst.segment.allocate(srcLength << 3);
        // Recursively copy each pointer in the list.
        for (let i = 0; i < srcLength; i++) {
            const srcPtr = new Pointer(srcContent.segment, srcContent.byteOffset + (i << 3), src._capnp.depthLimit - 1);
            const dstPtr = new Pointer(dstContent.segment, dstContent.byteOffset + (i << 3), dst._capnp.depthLimit - 1);
            copyFrom(srcPtr, dstPtr);
        }
    }
    else if (srcElementSize === list_element_size_1.ListElementSize.COMPOSITE) {
        srcCompositeSize = object_size_1.padToWord(getTargetCompositeListSize(src));
        srcStructByteLength = object_size_1.getByteLength(srcCompositeSize);
        dstContent = dst.segment.allocate(object_size_1.getByteLength(srcCompositeSize) * srcLength + 8);
        // Copy the tag word.
        dstContent.segment.copyWord(dstContent.byteOffset, srcContent.segment, srcContent.byteOffset - 8);
        // Copy the entire contents, including all pointers. This should be more efficient than making `srcLength`
        // copies to skip the pointer sections, and we're about to rewrite all those pointers anyway.
        // PERF: Skip this step if the composite struct only contains pointers.
        if (srcCompositeSize.dataByteLength > 0) {
            const wordLength = object_size_1.getWordLength(srcCompositeSize) * srcLength;
            dstContent.segment.copyWords(dstContent.byteOffset + 8, srcContent.segment, srcContent.byteOffset, wordLength);
        }
        // Recursively copy all the pointers in each struct.
        for (let i = 0; i < srcLength; i++) {
            for (let j = 0; j < srcCompositeSize.pointerLength; j++) {
                const offset = i * srcStructByteLength + srcCompositeSize.dataByteLength + (j << 3);
                const srcPtr = new Pointer(srcContent.segment, srcContent.byteOffset + offset, src._capnp.depthLimit - 1);
                const dstPtr = new Pointer(dstContent.segment, dstContent.byteOffset + offset + 8, dst._capnp.depthLimit - 1);
                copyFrom(srcPtr, dstPtr);
            }
        }
    }
    else {
        const byteLength = util_1.padToWord(srcElementSize === list_element_size_1.ListElementSize.BIT
            ? (srcLength + 7) >>> 3
            : getListElementByteLength(srcElementSize) * srcLength);
        const wordLength = byteLength >>> 3;
        dstContent = dst.segment.allocate(byteLength);
        // Copy all of the list contents word-by-word.
        dstContent.segment.copyWords(dstContent.byteOffset, srcContent.segment, srcContent.byteOffset, wordLength);
    }
    // Initialize the list pointer.
    const res = initPointer(dstContent.segment, dstContent.byteOffset, dst);
    setListPointer(res.offsetWords, srcElementSize, srcLength, res.pointer, srcCompositeSize);
}
exports.copyFromList = copyFromList;
function copyFromStruct(src, dst) {
    if (dst._capnp.depthLimit <= 0)
        throw new Error(errors_1.PTR_DEPTH_LIMIT_EXCEEDED);
    const srcContent = getContent(src);
    const srcSize = getTargetStructSize(src);
    const srcDataWordLength = object_size_1.getDataWordLength(srcSize);
    // Allocate space for the destination content.
    const dstContent = dst.segment.allocate(object_size_1.getByteLength(srcSize));
    // Copy the data section.
    dstContent.segment.copyWords(dstContent.byteOffset, srcContent.segment, srcContent.byteOffset, srcDataWordLength);
    // Copy the pointer section.
    for (let i = 0; i < srcSize.pointerLength; i++) {
        const offset = srcSize.dataByteLength + i * 8;
        const srcPtr = new Pointer(srcContent.segment, srcContent.byteOffset + offset, src._capnp.depthLimit - 1);
        const dstPtr = new Pointer(dstContent.segment, dstContent.byteOffset + offset, dst._capnp.depthLimit - 1);
        copyFrom(srcPtr, dstPtr);
    }
    // Don't touch dst if it's already initialized as a composite list pointer. With composite struct pointers there's
    // no pointer to copy here and we've already copied the contents.
    if (dst._capnp.compositeList)
        return;
    // Initialize the struct pointer.
    const res = initPointer(dstContent.segment, dstContent.byteOffset, dst);
    setStructPointer(res.offsetWords, srcSize, res.pointer);
}
exports.copyFromStruct = copyFromStruct;
/**
 * Track the allocation of a new Pointer object.
 *
 * This will decrement an internal counter tracking how many bytes have been traversed in the message so far. After
 * a certain limit, this method will throw an error in order to prevent a certain class of DoS attacks.
 *
 * @param {Message} message The message the pointer belongs to.
 * @param {Pointer} p The pointer being allocated.
 * @returns {void}
 */
function trackPointerAllocation(message, p) {
    message._capnp.traversalLimit -= 8;
    if (message._capnp.traversalLimit <= 0) {
        throw new Error(util_1.format(errors_1.PTR_TRAVERSAL_LIMIT_EXCEEDED, p));
    }
}
exports.trackPointerAllocation = trackPointerAllocation;
//# sourceMappingURL=pointer.js.map