Spaces:
Configuration error
Configuration error
File size: 35,263 Bytes
5641073 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 |
"use strict";
/**
* @author jdiaz5513
*/
Object.defineProperty(exports, "__esModule", { value: true });
exports.trackPointerAllocation = exports.copyFromStruct = exports.copyFromList = exports.validate = exports.setStructPointer = exports.setListPointer = exports.setInterfacePointer = exports.setFarPointer = exports.relocateTo = exports.isNull = exports.isDoubleFar = exports.initPointer = exports.getTargetStructSize = exports.getTargetPointerType = exports.getTargetListLength = exports.getTargetListElementSize = exports.getTargetCompositeListSize = exports.getTargetCompositeListTag = exports.getStructSize = exports.getStructPointerLength = exports.getStructDataWords = exports.getPointerType = exports.getOffsetWords = exports.getListLength = exports.getListElementSize = exports.getFarSegmentId = exports.getContent = exports.getCapabilityId = exports.followFars = exports.followFar = exports.erasePointer = exports.erase = exports.copyFrom = exports.add = exports.getListElementByteLength = exports.getListByteLength = exports.dump = exports.disown = exports.adopt = exports.Pointer = void 0;
const tslib_1 = require("tslib");
const debug_1 = tslib_1.__importDefault(require("debug"));
const constants_1 = require("../../constants");
const util_1 = require("../../util");
const list_element_size_1 = require("../list-element-size");
const object_size_1 = require("../object-size");
const orphan_1 = require("./orphan");
const pointer_allocation_result_1 = require("./pointer-allocation-result");
const pointer_type_1 = require("./pointer-type");
const errors_1 = require("../../errors");
const trace = debug_1.default("capnp:pointer");
trace("load");
/**
* A pointer referencing a single byte location in a segment. This is typically used for Cap'n Proto pointers, but is
* also sometimes used to reference an offset to a pointer's content or tag words.
*
* @export
* @class Pointer
*/
class Pointer {
constructor(segment, byteOffset, depthLimit = constants_1.MAX_DEPTH) {
this._capnp = { compositeList: false, depthLimit };
this.segment = segment;
this.byteOffset = byteOffset;
if (depthLimit === 0) {
throw new Error(util_1.format(errors_1.PTR_DEPTH_LIMIT_EXCEEDED, this));
}
// Make sure we keep track of all pointer allocations; there's a limit per message (prevent DoS).
trackPointerAllocation(segment.message, this);
// NOTE: It's okay to have a pointer to the end of the segment; you'll see this when creating pointers to the
// beginning of the content of a newly-allocated composite list with zero elements. Unlike other language
// implementations buffer over/underflows are not a big issue since all buffer access is bounds checked in native
// code anyway.
if (byteOffset < 0 || byteOffset > segment.byteLength) {
throw new Error(util_1.format(errors_1.PTR_OFFSET_OUT_OF_BOUNDS, byteOffset));
}
trace("new %s", this);
}
toString() {
return util_1.format("Pointer_%d@%a,%s,limit:%x", this.segment.id, this.byteOffset, dump(this), this._capnp.depthLimit);
}
}
exports.Pointer = Pointer;
Pointer.adopt = adopt;
Pointer.copyFrom = copyFrom;
Pointer.disown = disown;
Pointer.dump = dump;
Pointer.isNull = isNull;
Pointer._capnp = {
displayName: "Pointer",
};
/**
* Adopt an orphaned pointer, making the pointer point to the orphaned content without copying it.
*
* @param {Orphan<Pointer>} src The orphan to adopt.
* @param {Pointer} p The the pointer to adopt into.
* @returns {void}
*/
function adopt(src, p) {
src._moveTo(p);
}
exports.adopt = adopt;
/**
* Convert a pointer to an Orphan, zeroing out the pointer and leaving its content untouched. If the content is no
* longer needed, call `disown()` on the orphaned pointer to erase the contents as well.
*
* Call `adopt()` on the orphan with the new target pointer location to move it back into the message; the orphan
* object is then invalidated after adoption (can only adopt once!).
*
* @param {T} p The pointer to turn into an Orphan.
* @returns {Orphan<T>} An orphaned pointer.
*/
function disown(p) {
return new orphan_1.Orphan(p);
}
exports.disown = disown;
function dump(p) {
return util_1.bufferToHex(p.segment.buffer.slice(p.byteOffset, p.byteOffset + 8));
}
exports.dump = dump;
/**
* Get the total number of bytes required to hold a list of the provided size with the given length, rounded up to the
* nearest word.
*
* @param {ListElementSize} elementSize A number describing the size of the list elements.
* @param {number} length The length of the list.
* @param {ObjectSize} [compositeSize] The size of each element in a composite list; required if
* `elementSize === ListElementSize.COMPOSITE`.
* @returns {number} The number of bytes required to hold an element of that size, or `NaN` if that is undefined.
*/
function getListByteLength(elementSize, length, compositeSize) {
switch (elementSize) {
case list_element_size_1.ListElementSize.BIT:
return util_1.padToWord((length + 7) >>> 3);
case list_element_size_1.ListElementSize.BYTE:
case list_element_size_1.ListElementSize.BYTE_2:
case list_element_size_1.ListElementSize.BYTE_4:
case list_element_size_1.ListElementSize.BYTE_8:
case list_element_size_1.ListElementSize.POINTER:
case list_element_size_1.ListElementSize.VOID:
return util_1.padToWord(getListElementByteLength(elementSize) * length);
/* istanbul ignore next */
case list_element_size_1.ListElementSize.COMPOSITE:
if (compositeSize === undefined) {
throw new Error(util_1.format(errors_1.PTR_INVALID_LIST_SIZE, NaN));
}
return length * util_1.padToWord(object_size_1.getByteLength(compositeSize));
/* istanbul ignore next */
default:
throw new Error(errors_1.PTR_INVALID_LIST_SIZE);
}
}
exports.getListByteLength = getListByteLength;
/**
* Get the number of bytes required to hold a list element of the provided size. `COMPOSITE` elements do not have a
* fixed size, and `BIT` elements are packed into exactly a single bit, so these both return `NaN`.
*
* @param {ListElementSize} elementSize A number describing the size of the list elements.
* @returns {number} The number of bytes required to hold an element of that size, or `NaN` if that is undefined.
*/
function getListElementByteLength(elementSize) {
switch (elementSize) {
/* istanbul ignore next */
case list_element_size_1.ListElementSize.BIT:
return NaN;
case list_element_size_1.ListElementSize.BYTE:
return 1;
case list_element_size_1.ListElementSize.BYTE_2:
return 2;
case list_element_size_1.ListElementSize.BYTE_4:
return 4;
case list_element_size_1.ListElementSize.BYTE_8:
case list_element_size_1.ListElementSize.POINTER:
return 8;
/* istanbul ignore next */
case list_element_size_1.ListElementSize.COMPOSITE:
// Caller has to figure it out based on the tag word.
return NaN;
/* istanbul ignore next */
case list_element_size_1.ListElementSize.VOID:
return 0;
/* istanbul ignore next */
default:
throw new Error(util_1.format(errors_1.PTR_INVALID_LIST_SIZE, elementSize));
}
}
exports.getListElementByteLength = getListElementByteLength;
/**
* Add an offset to the pointer's offset and return a new Pointer for that address.
*
* @param {number} offset The number of bytes to add to the offset.
* @param {Pointer} p The pointer to add from.
* @returns {Pointer} A new pointer to the address.
*/
function add(offset, p) {
return new Pointer(p.segment, p.byteOffset + offset, p._capnp.depthLimit);
}
exports.add = add;
/**
* Replace a pointer with a deep copy of the pointer at `src` and all of its contents.
*
* @param {Pointer} src The pointer to copy.
* @param {Pointer} p The pointer to copy into.
* @returns {void}
*/
function copyFrom(src, p) {
// If the pointer is the same then this is a noop.
if (p.segment === src.segment && p.byteOffset === src.byteOffset) {
trace("ignoring copy operation from identical pointer %s", src);
return;
}
// Make sure we erase this pointer's contents before moving on. If src is null, that's all we do.
erase(p); // noop if null
if (isNull(src))
return;
switch (getTargetPointerType(src)) {
case pointer_type_1.PointerType.STRUCT:
copyFromStruct(src, p);
break;
case pointer_type_1.PointerType.LIST:
copyFromList(src, p);
break;
/* istanbul ignore next */
default:
throw new Error(util_1.format(errors_1.PTR_INVALID_POINTER_TYPE, getTargetPointerType(p)));
}
}
exports.copyFrom = copyFrom;
/**
* Recursively erase a pointer, any far pointers/landing pads/tag words, and the content it points to.
*
* Note that this will leave "holes" of zeroes in the message, since the space cannot be reclaimed. With packing this
* will have a negligible effect on the final message size.
*
* FIXME: This may need protection against infinite recursion...
*
* @param {Pointer} p The pointer to erase.
* @returns {void}
*/
function erase(p) {
if (isNull(p))
return;
// First deal with the contents.
let c;
switch (getTargetPointerType(p)) {
case pointer_type_1.PointerType.STRUCT: {
const size = getTargetStructSize(p);
c = getContent(p);
// Wipe the data section.
c.segment.fillZeroWords(c.byteOffset, size.dataByteLength / 8);
// Iterate over all the pointers and nuke them.
for (let i = 0; i < size.pointerLength; i++) {
erase(add(i * 8, c));
}
break;
}
case pointer_type_1.PointerType.LIST: {
const elementSize = getTargetListElementSize(p);
const length = getTargetListLength(p);
let contentWords = util_1.padToWord(length * getListElementByteLength(elementSize));
c = getContent(p);
if (elementSize === list_element_size_1.ListElementSize.POINTER) {
for (let i = 0; i < length; i++) {
erase(new Pointer(c.segment, c.byteOffset + i * 8, p._capnp.depthLimit - 1));
}
// Calling erase on each pointer takes care of the content, nothing left to do here.
break;
}
else if (elementSize === list_element_size_1.ListElementSize.COMPOSITE) {
// Read some stuff from the tag word.
const tag = add(-8, c);
const compositeSize = getStructSize(tag);
const compositeByteLength = object_size_1.getByteLength(compositeSize);
contentWords = getOffsetWords(tag);
// Kill the tag word.
c.segment.setWordZero(c.byteOffset - 8);
// Recursively erase each pointer.
for (let i = 0; i < length; i++) {
for (let j = 0; j < compositeSize.pointerLength; j++) {
erase(new Pointer(c.segment, c.byteOffset + i * compositeByteLength + j * 8, p._capnp.depthLimit - 1));
}
}
}
c.segment.fillZeroWords(c.byteOffset, contentWords);
break;
}
case pointer_type_1.PointerType.OTHER:
// No content.
break;
default:
throw new Error(util_1.format(errors_1.PTR_INVALID_POINTER_TYPE, getTargetPointerType(p)));
}
erasePointer(p);
}
exports.erase = erase;
/**
* Set the pointer (and far pointer landing pads, if applicable) to zero. Does not touch the pointer's content.
*
* @param {Pointer} p The pointer to erase.
* @returns {void}
*/
function erasePointer(p) {
if (getPointerType(p) === pointer_type_1.PointerType.FAR) {
const landingPad = followFar(p);
if (isDoubleFar(p)) {
// Kill the double-far tag word.
landingPad.segment.setWordZero(landingPad.byteOffset + 8);
}
// Kill the landing pad.
landingPad.segment.setWordZero(landingPad.byteOffset);
}
// Finally! Kill the pointer itself...
p.segment.setWordZero(p.byteOffset);
}
exports.erasePointer = erasePointer;
/**
* Interpret the pointer as a far pointer, returning its target segment and offset.
*
* @param {Pointer} p The pointer to read from.
* @returns {Pointer} A pointer to the far target.
*/
function followFar(p) {
const targetSegment = p.segment.message.getSegment(p.segment.getUint32(p.byteOffset + 4));
const targetWordOffset = p.segment.getUint32(p.byteOffset) >>> 3;
return new Pointer(targetSegment, targetWordOffset * 8, p._capnp.depthLimit - 1);
}
exports.followFar = followFar;
/**
* If the pointer address references a far pointer, follow it to the location where the actual pointer data is written.
* Otherwise, returns the pointer unmodified.
*
* @param {Pointer} p The pointer to read from.
* @returns {Pointer} A new pointer representing the target location, or `p` if it is not a far pointer.
*/
function followFars(p) {
if (getPointerType(p) === pointer_type_1.PointerType.FAR) {
const landingPad = followFar(p);
if (isDoubleFar(p))
landingPad.byteOffset += 8;
return landingPad;
}
return p;
}
exports.followFars = followFars;
function getCapabilityId(p) {
return p.segment.getUint32(p.byteOffset + 4);
}
exports.getCapabilityId = getCapabilityId;
function isCompositeList(p) {
return getTargetPointerType(p) === pointer_type_1.PointerType.LIST && getTargetListElementSize(p) === list_element_size_1.ListElementSize.COMPOSITE;
}
/**
* Obtain the location of the pointer's content, following far pointers as needed.
* If the pointer is a struct pointer and `compositeIndex` is set, it will be offset by a multiple of the struct's size.
*
* @param {Pointer} p The pointer to read from.
* @param {boolean} [ignoreCompositeIndex] If true, will not follow the composite struct pointer's composite index and
* instead return a pointer to the parent list's contents (also the beginning of the first struct).
* @returns {Pointer} A pointer to the beginning of the pointer's content.
*/
function getContent(p, ignoreCompositeIndex) {
let c;
if (isDoubleFar(p)) {
const landingPad = followFar(p);
c = new Pointer(p.segment.message.getSegment(getFarSegmentId(landingPad)), getOffsetWords(landingPad) * 8);
}
else {
const target = followFars(p);
c = new Pointer(target.segment, target.byteOffset + 8 + getOffsetWords(target) * 8);
}
if (isCompositeList(p))
c.byteOffset += 8;
if (!ignoreCompositeIndex && p._capnp.compositeIndex !== undefined) {
// Seek backwards by one word so we can read the struct size off the tag word.
c.byteOffset -= 8;
// Seek ahead by `compositeIndex` multiples of the struct's total size.
c.byteOffset += 8 + p._capnp.compositeIndex * object_size_1.getByteLength(object_size_1.padToWord(getStructSize(c)));
}
return c;
}
exports.getContent = getContent;
/**
* Read the target segment ID from a far pointer.
*
* @param {Pointer} p The pointer to read from.
* @returns {number} The target segment ID.
*/
function getFarSegmentId(p) {
return p.segment.getUint32(p.byteOffset + 4);
}
exports.getFarSegmentId = getFarSegmentId;
/**
* Get a number indicating the size of the list's elements.
*
* @param {Pointer} p The pointer to read from.
* @returns {ListElementSize} The size of the list's elements.
*/
function getListElementSize(p) {
return p.segment.getUint32(p.byteOffset + 4) & constants_1.LIST_SIZE_MASK;
}
exports.getListElementSize = getListElementSize;
/**
* Get the number of elements in a list pointer. For composite lists, it instead represents the total number of words in
* the list (not counting the tag word).
*
* This method does **not** attempt to distinguish between composite and non-composite lists. To get the correct
* length for composite lists use `getTargetListLength()` instead.
*
* @param {Pointer} p The pointer to read from.
* @returns {number} The length of the list, or total number of words for composite lists.
*/
function getListLength(p) {
return p.segment.getUint32(p.byteOffset + 4) >>> 3;
}
exports.getListLength = getListLength;
/**
* Get the offset (in words) from the end of a pointer to the start of its content. For struct pointers, this is the
* beginning of the data section, and for list pointers it is the location of the first element. The value should
* always be zero for interface pointers.
*
* @param {Pointer} p The pointer to read from.
* @returns {number} The offset, in words, from the end of the pointer to the start of the data section.
*/
function getOffsetWords(p) {
const o = p.segment.getInt32(p.byteOffset);
// Far pointers only have 29 offset bits.
return o & 2 ? o >> 3 : o >> 2;
}
exports.getOffsetWords = getOffsetWords;
/**
* Look up the pointer's type.
*
* @param {Pointer} p The pointer to read from.
* @returns {PointerType} The type of pointer.
*/
function getPointerType(p) {
return p.segment.getUint32(p.byteOffset) & constants_1.POINTER_TYPE_MASK;
}
exports.getPointerType = getPointerType;
/**
* Read the number of data words from this struct pointer.
*
* @param {Pointer} p The pointer to read from.
* @returns {number} The number of data words in the struct.
*/
function getStructDataWords(p) {
return p.segment.getUint16(p.byteOffset + 4);
}
exports.getStructDataWords = getStructDataWords;
/**
* Read the number of pointers contained in this struct pointer.
*
* @param {Pointer} p The pointer to read from.
* @returns {number} The number of pointers in this struct.
*/
function getStructPointerLength(p) {
return p.segment.getUint16(p.byteOffset + 6);
}
exports.getStructPointerLength = getStructPointerLength;
/**
* Get an object describing this struct pointer's size.
*
* @param {Pointer} p The pointer to read from.
* @returns {ObjectSize} The size of the struct.
*/
function getStructSize(p) {
return new object_size_1.ObjectSize(getStructDataWords(p) * 8, getStructPointerLength(p));
}
exports.getStructSize = getStructSize;
/**
* Get a pointer to this pointer's composite list tag word, following far pointers as needed.
*
* @param {Pointer} p The pointer to read from.
* @returns {Pointer} A pointer to the list's composite tag word.
*/
function getTargetCompositeListTag(p) {
const c = getContent(p);
// The composite list tag is always one word before the content.
c.byteOffset -= 8;
return c;
}
exports.getTargetCompositeListTag = getTargetCompositeListTag;
/**
* Get the object size for the target composite list, following far pointers as needed.
*
* @param {Pointer} p The pointer to read from.
* @returns {ObjectSize} An object describing the size of each struct in the list.
*/
function getTargetCompositeListSize(p) {
return getStructSize(getTargetCompositeListTag(p));
}
exports.getTargetCompositeListSize = getTargetCompositeListSize;
/**
* Get the size of the list elements referenced by this pointer, following far pointers if necessary.
*
* @param {Pointer} p The pointer to read from.
* @returns {ListElementSize} The size of the elements in the list.
*/
function getTargetListElementSize(p) {
return getListElementSize(followFars(p));
}
exports.getTargetListElementSize = getTargetListElementSize;
/**
* Get the length of the list referenced by this pointer, following far pointers if necessary. If the list is a
* composite list, it will look up the tag word and read the length from there.
*
* @param {Pointer} p The pointer to read from.
* @returns {number} The number of elements in the list.
*/
function getTargetListLength(p) {
const t = followFars(p);
if (getListElementSize(t) === list_element_size_1.ListElementSize.COMPOSITE) {
// The content is prefixed by a tag word; it's a struct pointer whose offset contains the list's length.
return getOffsetWords(getTargetCompositeListTag(p));
}
return getListLength(t);
}
exports.getTargetListLength = getTargetListLength;
/**
* Get the type of a pointer, following far pointers if necessary. For non-far pointers this is equivalent to calling
* `getPointerType()`.
*
* The target of a far pointer can never be another far pointer, and this method will throw if such a situation is
* encountered.
*
* @param {Pointer} p The pointer to read from.
* @returns {PointerType} The type of pointer referenced by this pointer.
*/
function getTargetPointerType(p) {
const t = getPointerType(followFars(p));
if (t === pointer_type_1.PointerType.FAR)
throw new Error(util_1.format(errors_1.PTR_INVALID_FAR_TARGET, p));
return t;
}
exports.getTargetPointerType = getTargetPointerType;
/**
* Get the size of the struct referenced by a pointer, following far pointers if necessary.
*
* @param {Pointer} p The poiner to read from.
* @returns {ObjectSize} The size of the struct referenced by this pointer.
*/
function getTargetStructSize(p) {
return getStructSize(followFars(p));
}
exports.getTargetStructSize = getTargetStructSize;
/**
* Initialize a pointer to point at the data in the content segment. If the content segment is not the same as the
* pointer's segment, this will allocate and write far pointers as needed. Nothing is written otherwise.
*
* The return value includes a pointer to write the pointer's actual data to (the eventual far target), and the offset
* value (in words) to use for that pointer. In the case of double-far pointers this offset will always be zero.
*
* @param {Segment} contentSegment The segment containing this pointer's content.
* @param {number} contentOffset The offset within the content segment for the beginning of this pointer's content.
* @param {Pointer} p The pointer to initialize.
* @returns {PointerAllocationResult} An object containing a pointer (where the pointer data should be written), and
* the value to use as the offset for that pointer.
*/
function initPointer(contentSegment, contentOffset, p) {
if (p.segment !== contentSegment) {
// Need a far pointer.
trace("Initializing far pointer %s -> %s.", p, contentSegment);
if (!contentSegment.hasCapacity(8)) {
// GAH! Not enough space in the content segment for a landing pad so we need a double far pointer.
const landingPad = p.segment.allocate(16);
trace("GAH! Initializing double-far pointer in %s from %s -> %s.", p, contentSegment, landingPad);
setFarPointer(true, landingPad.byteOffset / 8, landingPad.segment.id, p);
setFarPointer(false, contentOffset / 8, contentSegment.id, landingPad);
landingPad.byteOffset += 8;
return new pointer_allocation_result_1.PointerAllocationResult(landingPad, 0);
}
// Allocate a far pointer landing pad in the target segment.
const landingPad = contentSegment.allocate(8);
if (landingPad.segment.id !== contentSegment.id) {
throw new Error(errors_1.INVARIANT_UNREACHABLE_CODE);
}
setFarPointer(false, landingPad.byteOffset / 8, landingPad.segment.id, p);
return new pointer_allocation_result_1.PointerAllocationResult(landingPad, (contentOffset - landingPad.byteOffset - 8) / 8);
}
trace("Initializing intra-segment pointer %s -> %a.", p, contentOffset);
return new pointer_allocation_result_1.PointerAllocationResult(p, (contentOffset - p.byteOffset - 8) / 8);
}
exports.initPointer = initPointer;
/**
* Check if the pointer is a double-far pointer.
*
* @param {Pointer} p The pointer to read from.
* @returns {boolean} `true` if it is a double-far pointer, `false` otherwise.
*/
function isDoubleFar(p) {
return getPointerType(p) === pointer_type_1.PointerType.FAR && (p.segment.getUint32(p.byteOffset) & constants_1.POINTER_DOUBLE_FAR_MASK) !== 0;
}
exports.isDoubleFar = isDoubleFar;
/**
* Quickly check to see if the pointer is "null". A "null" pointer is a zero word, equivalent to an empty struct
* pointer.
*
* @param {Pointer} p The pointer to read from.
* @returns {boolean} `true` if the pointer is "null".
*/
function isNull(p) {
return p.segment.isWordZero(p.byteOffset);
}
exports.isNull = isNull;
/**
* Relocate a pointer to the given destination, ensuring that it points to the same content. This will create far
* pointers as needed if the content is in a different segment than the destination. After the relocation the source
* pointer will be erased and is no longer valid.
*
* @param {Pointer} dst The desired location for the `src` pointer. Any existing contents will be erased before
* relocating!
* @param {Pointer} src The pointer to relocate.
* @returns {void}
*/
function relocateTo(dst, src) {
const t = followFars(src);
const lo = t.segment.getUint8(t.byteOffset) & 0x03; // discard the offset
const hi = t.segment.getUint32(t.byteOffset + 4);
// Make sure anything dst was pointing to is wiped out.
erase(dst);
const res = initPointer(t.segment, t.byteOffset + 8 + getOffsetWords(t) * 8, dst);
// Keep the low 2 bits and write the new offset.
res.pointer.segment.setUint32(res.pointer.byteOffset, lo | (res.offsetWords << 2));
// Keep the high 32 bits intact.
res.pointer.segment.setUint32(res.pointer.byteOffset + 4, hi);
erasePointer(src);
}
exports.relocateTo = relocateTo;
/**
* Write a far pointer.
*
* @param {boolean} doubleFar Set to `true` if this is a double far pointer.
* @param {number} offsetWords The offset, in words, to the target pointer.
* @param {number} segmentId The segment the target pointer is located in.
* @param {Pointer} p The pointer to write to.
* @returns {void}
*/
function setFarPointer(doubleFar, offsetWords, segmentId, p) {
const A = pointer_type_1.PointerType.FAR;
const B = doubleFar ? 1 : 0;
const C = offsetWords;
const D = segmentId;
p.segment.setUint32(p.byteOffset, A | (B << 2) | (C << 3));
p.segment.setUint32(p.byteOffset + 4, D);
}
exports.setFarPointer = setFarPointer;
/**
* Write a raw interface pointer.
*
* @param {number} capId The capability ID.
* @param {Pointer} p The pointer to write to.
* @returns {void}
*/
function setInterfacePointer(capId, p) {
p.segment.setUint32(p.byteOffset, pointer_type_1.PointerType.OTHER);
p.segment.setUint32(p.byteOffset + 4, capId);
}
exports.setInterfacePointer = setInterfacePointer;
/**
* Write a raw list pointer.
*
* @param {number} offsetWords The number of words from the end of this pointer to the beginning of the list content.
* @param {ListElementSize} size The size of each element in the list.
* @param {number} length The number of elements in the list.
* @param {Pointer} p The pointer to write to.
* @param {ObjectSize} [compositeSize] For composite lists this describes the size of each element in this list. This
* is required for composite lists.
* @returns {void}
*/
function setListPointer(offsetWords, size, length, p, compositeSize) {
const A = pointer_type_1.PointerType.LIST;
const B = offsetWords;
const C = size;
let D = length;
if (size === list_element_size_1.ListElementSize.COMPOSITE) {
if (compositeSize === undefined) {
throw new TypeError(errors_1.TYPE_COMPOSITE_SIZE_UNDEFINED);
}
D *= object_size_1.getWordLength(compositeSize);
}
p.segment.setUint32(p.byteOffset, A | (B << 2));
p.segment.setUint32(p.byteOffset + 4, C | (D << 3));
}
exports.setListPointer = setListPointer;
/**
* Write a raw struct pointer.
*
* @param {number} offsetWords The number of words from the end of this pointer to the beginning of the struct's data
* section.
* @param {ObjectSize} size An object describing the size of the struct.
* @param {Pointer} p The pointer to write to.
* @returns {void}
*/
function setStructPointer(offsetWords, size, p) {
const A = pointer_type_1.PointerType.STRUCT;
const B = offsetWords;
const C = object_size_1.getDataWordLength(size);
const D = size.pointerLength;
p.segment.setUint32(p.byteOffset, A | (B << 2));
p.segment.setUint16(p.byteOffset + 4, C);
p.segment.setUint16(p.byteOffset + 6, D);
}
exports.setStructPointer = setStructPointer;
/**
* Read some bits off a pointer to make sure it has the right pointer data.
*
* @param {PointerType} pointerType The expected pointer type.
* @param {Pointer} p The pointer to validate.
* @param {ListElementSize} [elementSize] For list pointers, the expected element size. Leave this
* undefined for struct pointers.
* @returns {void}
*/
function validate(pointerType, p, elementSize) {
if (isNull(p))
return;
const t = followFars(p);
// Check the pointer type.
const A = t.segment.getUint32(t.byteOffset) & constants_1.POINTER_TYPE_MASK;
if (A !== pointerType) {
throw new Error(util_1.format(errors_1.PTR_WRONG_POINTER_TYPE, p, pointerType));
}
// Check the list element size, if provided.
if (elementSize !== undefined) {
const C = t.segment.getUint32(t.byteOffset + 4) & constants_1.LIST_SIZE_MASK;
if (C !== elementSize) {
throw new Error(util_1.format(errors_1.PTR_WRONG_LIST_TYPE, p, list_element_size_1.ListElementSize[elementSize]));
}
}
}
exports.validate = validate;
function copyFromList(src, dst) {
if (dst._capnp.depthLimit <= 0)
throw new Error(errors_1.PTR_DEPTH_LIMIT_EXCEEDED);
const srcContent = getContent(src);
const srcElementSize = getTargetListElementSize(src);
const srcLength = getTargetListLength(src);
let srcCompositeSize;
let srcStructByteLength;
let dstContent;
if (srcElementSize === list_element_size_1.ListElementSize.POINTER) {
dstContent = dst.segment.allocate(srcLength << 3);
// Recursively copy each pointer in the list.
for (let i = 0; i < srcLength; i++) {
const srcPtr = new Pointer(srcContent.segment, srcContent.byteOffset + (i << 3), src._capnp.depthLimit - 1);
const dstPtr = new Pointer(dstContent.segment, dstContent.byteOffset + (i << 3), dst._capnp.depthLimit - 1);
copyFrom(srcPtr, dstPtr);
}
}
else if (srcElementSize === list_element_size_1.ListElementSize.COMPOSITE) {
srcCompositeSize = object_size_1.padToWord(getTargetCompositeListSize(src));
srcStructByteLength = object_size_1.getByteLength(srcCompositeSize);
dstContent = dst.segment.allocate(object_size_1.getByteLength(srcCompositeSize) * srcLength + 8);
// Copy the tag word.
dstContent.segment.copyWord(dstContent.byteOffset, srcContent.segment, srcContent.byteOffset - 8);
// Copy the entire contents, including all pointers. This should be more efficient than making `srcLength`
// copies to skip the pointer sections, and we're about to rewrite all those pointers anyway.
// PERF: Skip this step if the composite struct only contains pointers.
if (srcCompositeSize.dataByteLength > 0) {
const wordLength = object_size_1.getWordLength(srcCompositeSize) * srcLength;
dstContent.segment.copyWords(dstContent.byteOffset + 8, srcContent.segment, srcContent.byteOffset, wordLength);
}
// Recursively copy all the pointers in each struct.
for (let i = 0; i < srcLength; i++) {
for (let j = 0; j < srcCompositeSize.pointerLength; j++) {
const offset = i * srcStructByteLength + srcCompositeSize.dataByteLength + (j << 3);
const srcPtr = new Pointer(srcContent.segment, srcContent.byteOffset + offset, src._capnp.depthLimit - 1);
const dstPtr = new Pointer(dstContent.segment, dstContent.byteOffset + offset + 8, dst._capnp.depthLimit - 1);
copyFrom(srcPtr, dstPtr);
}
}
}
else {
const byteLength = util_1.padToWord(srcElementSize === list_element_size_1.ListElementSize.BIT
? (srcLength + 7) >>> 3
: getListElementByteLength(srcElementSize) * srcLength);
const wordLength = byteLength >>> 3;
dstContent = dst.segment.allocate(byteLength);
// Copy all of the list contents word-by-word.
dstContent.segment.copyWords(dstContent.byteOffset, srcContent.segment, srcContent.byteOffset, wordLength);
}
// Initialize the list pointer.
const res = initPointer(dstContent.segment, dstContent.byteOffset, dst);
setListPointer(res.offsetWords, srcElementSize, srcLength, res.pointer, srcCompositeSize);
}
exports.copyFromList = copyFromList;
function copyFromStruct(src, dst) {
if (dst._capnp.depthLimit <= 0)
throw new Error(errors_1.PTR_DEPTH_LIMIT_EXCEEDED);
const srcContent = getContent(src);
const srcSize = getTargetStructSize(src);
const srcDataWordLength = object_size_1.getDataWordLength(srcSize);
// Allocate space for the destination content.
const dstContent = dst.segment.allocate(object_size_1.getByteLength(srcSize));
// Copy the data section.
dstContent.segment.copyWords(dstContent.byteOffset, srcContent.segment, srcContent.byteOffset, srcDataWordLength);
// Copy the pointer section.
for (let i = 0; i < srcSize.pointerLength; i++) {
const offset = srcSize.dataByteLength + i * 8;
const srcPtr = new Pointer(srcContent.segment, srcContent.byteOffset + offset, src._capnp.depthLimit - 1);
const dstPtr = new Pointer(dstContent.segment, dstContent.byteOffset + offset, dst._capnp.depthLimit - 1);
copyFrom(srcPtr, dstPtr);
}
// Don't touch dst if it's already initialized as a composite list pointer. With composite struct pointers there's
// no pointer to copy here and we've already copied the contents.
if (dst._capnp.compositeList)
return;
// Initialize the struct pointer.
const res = initPointer(dstContent.segment, dstContent.byteOffset, dst);
setStructPointer(res.offsetWords, srcSize, res.pointer);
}
exports.copyFromStruct = copyFromStruct;
/**
* Track the allocation of a new Pointer object.
*
* This will decrement an internal counter tracking how many bytes have been traversed in the message so far. After
* a certain limit, this method will throw an error in order to prevent a certain class of DoS attacks.
*
* @param {Message} message The message the pointer belongs to.
* @param {Pointer} p The pointer being allocated.
* @returns {void}
*/
function trackPointerAllocation(message, p) {
message._capnp.traversalLimit -= 8;
if (message._capnp.traversalLimit <= 0) {
throw new Error(util_1.format(errors_1.PTR_TRAVERSAL_LIMIT_EXCEEDED, p));
}
}
exports.trackPointerAllocation = trackPointerAllocation;
//# sourceMappingURL=pointer.js.map |