Spaces:
Configuration error
Configuration error
/** | |
* Supported cipher modes. | |
* | |
* @author Dave Longley | |
* | |
* Copyright (c) 2010-2014 Digital Bazaar, Inc. | |
*/ | |
var forge = require('./forge'); | |
require('./util'); | |
forge.cipher = forge.cipher || {}; | |
// supported cipher modes | |
var modes = module.exports = forge.cipher.modes = forge.cipher.modes || {}; | |
/** Electronic codebook (ECB) (Don't use this; it's not secure) **/ | |
modes.ecb = function(options) { | |
options = options || {}; | |
this.name = 'ECB'; | |
this.cipher = options.cipher; | |
this.blockSize = options.blockSize || 16; | |
this._ints = this.blockSize / 4; | |
this._inBlock = new Array(this._ints); | |
this._outBlock = new Array(this._ints); | |
}; | |
modes.ecb.prototype.start = function(options) {}; | |
modes.ecb.prototype.encrypt = function(input, output, finish) { | |
// not enough input to encrypt | |
if(input.length() < this.blockSize && !(finish && input.length() > 0)) { | |
return true; | |
} | |
// get next block | |
for(var i = 0; i < this._ints; ++i) { | |
this._inBlock[i] = input.getInt32(); | |
} | |
// encrypt block | |
this.cipher.encrypt(this._inBlock, this._outBlock); | |
// write output | |
for(var i = 0; i < this._ints; ++i) { | |
output.putInt32(this._outBlock[i]); | |
} | |
}; | |
modes.ecb.prototype.decrypt = function(input, output, finish) { | |
// not enough input to decrypt | |
if(input.length() < this.blockSize && !(finish && input.length() > 0)) { | |
return true; | |
} | |
// get next block | |
for(var i = 0; i < this._ints; ++i) { | |
this._inBlock[i] = input.getInt32(); | |
} | |
// decrypt block | |
this.cipher.decrypt(this._inBlock, this._outBlock); | |
// write output | |
for(var i = 0; i < this._ints; ++i) { | |
output.putInt32(this._outBlock[i]); | |
} | |
}; | |
modes.ecb.prototype.pad = function(input, options) { | |
// add PKCS#7 padding to block (each pad byte is the | |
// value of the number of pad bytes) | |
var padding = (input.length() === this.blockSize ? | |
this.blockSize : (this.blockSize - input.length())); | |
input.fillWithByte(padding, padding); | |
return true; | |
}; | |
modes.ecb.prototype.unpad = function(output, options) { | |
// check for error: input data not a multiple of blockSize | |
if(options.overflow > 0) { | |
return false; | |
} | |
// ensure padding byte count is valid | |
var len = output.length(); | |
var count = output.at(len - 1); | |
if(count > (this.blockSize << 2)) { | |
return false; | |
} | |
// trim off padding bytes | |
output.truncate(count); | |
return true; | |
}; | |
/** Cipher-block Chaining (CBC) **/ | |
modes.cbc = function(options) { | |
options = options || {}; | |
this.name = 'CBC'; | |
this.cipher = options.cipher; | |
this.blockSize = options.blockSize || 16; | |
this._ints = this.blockSize / 4; | |
this._inBlock = new Array(this._ints); | |
this._outBlock = new Array(this._ints); | |
}; | |
modes.cbc.prototype.start = function(options) { | |
// Note: legacy support for using IV residue (has security flaws) | |
// if IV is null, reuse block from previous processing | |
if(options.iv === null) { | |
// must have a previous block | |
if(!this._prev) { | |
throw new Error('Invalid IV parameter.'); | |
} | |
this._iv = this._prev.slice(0); | |
} else if(!('iv' in options)) { | |
throw new Error('Invalid IV parameter.'); | |
} else { | |
// save IV as "previous" block | |
this._iv = transformIV(options.iv, this.blockSize); | |
this._prev = this._iv.slice(0); | |
} | |
}; | |
modes.cbc.prototype.encrypt = function(input, output, finish) { | |
// not enough input to encrypt | |
if(input.length() < this.blockSize && !(finish && input.length() > 0)) { | |
return true; | |
} | |
// get next block | |
// CBC XOR's IV (or previous block) with plaintext | |
for(var i = 0; i < this._ints; ++i) { | |
this._inBlock[i] = this._prev[i] ^ input.getInt32(); | |
} | |
// encrypt block | |
this.cipher.encrypt(this._inBlock, this._outBlock); | |
// write output, save previous block | |
for(var i = 0; i < this._ints; ++i) { | |
output.putInt32(this._outBlock[i]); | |
} | |
this._prev = this._outBlock; | |
}; | |
modes.cbc.prototype.decrypt = function(input, output, finish) { | |
// not enough input to decrypt | |
if(input.length() < this.blockSize && !(finish && input.length() > 0)) { | |
return true; | |
} | |
// get next block | |
for(var i = 0; i < this._ints; ++i) { | |
this._inBlock[i] = input.getInt32(); | |
} | |
// decrypt block | |
this.cipher.decrypt(this._inBlock, this._outBlock); | |
// write output, save previous ciphered block | |
// CBC XOR's IV (or previous block) with ciphertext | |
for(var i = 0; i < this._ints; ++i) { | |
output.putInt32(this._prev[i] ^ this._outBlock[i]); | |
} | |
this._prev = this._inBlock.slice(0); | |
}; | |
modes.cbc.prototype.pad = function(input, options) { | |
// add PKCS#7 padding to block (each pad byte is the | |
// value of the number of pad bytes) | |
var padding = (input.length() === this.blockSize ? | |
this.blockSize : (this.blockSize - input.length())); | |
input.fillWithByte(padding, padding); | |
return true; | |
}; | |
modes.cbc.prototype.unpad = function(output, options) { | |
// check for error: input data not a multiple of blockSize | |
if(options.overflow > 0) { | |
return false; | |
} | |
// ensure padding byte count is valid | |
var len = output.length(); | |
var count = output.at(len - 1); | |
if(count > (this.blockSize << 2)) { | |
return false; | |
} | |
// trim off padding bytes | |
output.truncate(count); | |
return true; | |
}; | |
/** Cipher feedback (CFB) **/ | |
modes.cfb = function(options) { | |
options = options || {}; | |
this.name = 'CFB'; | |
this.cipher = options.cipher; | |
this.blockSize = options.blockSize || 16; | |
this._ints = this.blockSize / 4; | |
this._inBlock = null; | |
this._outBlock = new Array(this._ints); | |
this._partialBlock = new Array(this._ints); | |
this._partialOutput = forge.util.createBuffer(); | |
this._partialBytes = 0; | |
}; | |
modes.cfb.prototype.start = function(options) { | |
if(!('iv' in options)) { | |
throw new Error('Invalid IV parameter.'); | |
} | |
// use IV as first input | |
this._iv = transformIV(options.iv, this.blockSize); | |
this._inBlock = this._iv.slice(0); | |
this._partialBytes = 0; | |
}; | |
modes.cfb.prototype.encrypt = function(input, output, finish) { | |
// not enough input to encrypt | |
var inputLength = input.length(); | |
if(inputLength === 0) { | |
return true; | |
} | |
// encrypt block | |
this.cipher.encrypt(this._inBlock, this._outBlock); | |
// handle full block | |
if(this._partialBytes === 0 && inputLength >= this.blockSize) { | |
// XOR input with output, write input as output | |
for(var i = 0; i < this._ints; ++i) { | |
this._inBlock[i] = input.getInt32() ^ this._outBlock[i]; | |
output.putInt32(this._inBlock[i]); | |
} | |
return; | |
} | |
// handle partial block | |
var partialBytes = (this.blockSize - inputLength) % this.blockSize; | |
if(partialBytes > 0) { | |
partialBytes = this.blockSize - partialBytes; | |
} | |
// XOR input with output, write input as partial output | |
this._partialOutput.clear(); | |
for(var i = 0; i < this._ints; ++i) { | |
this._partialBlock[i] = input.getInt32() ^ this._outBlock[i]; | |
this._partialOutput.putInt32(this._partialBlock[i]); | |
} | |
if(partialBytes > 0) { | |
// block still incomplete, restore input buffer | |
input.read -= this.blockSize; | |
} else { | |
// block complete, update input block | |
for(var i = 0; i < this._ints; ++i) { | |
this._inBlock[i] = this._partialBlock[i]; | |
} | |
} | |
// skip any previous partial bytes | |
if(this._partialBytes > 0) { | |
this._partialOutput.getBytes(this._partialBytes); | |
} | |
if(partialBytes > 0 && !finish) { | |
output.putBytes(this._partialOutput.getBytes( | |
partialBytes - this._partialBytes)); | |
this._partialBytes = partialBytes; | |
return true; | |
} | |
output.putBytes(this._partialOutput.getBytes( | |
inputLength - this._partialBytes)); | |
this._partialBytes = 0; | |
}; | |
modes.cfb.prototype.decrypt = function(input, output, finish) { | |
// not enough input to decrypt | |
var inputLength = input.length(); | |
if(inputLength === 0) { | |
return true; | |
} | |
// encrypt block (CFB always uses encryption mode) | |
this.cipher.encrypt(this._inBlock, this._outBlock); | |
// handle full block | |
if(this._partialBytes === 0 && inputLength >= this.blockSize) { | |
// XOR input with output, write input as output | |
for(var i = 0; i < this._ints; ++i) { | |
this._inBlock[i] = input.getInt32(); | |
output.putInt32(this._inBlock[i] ^ this._outBlock[i]); | |
} | |
return; | |
} | |
// handle partial block | |
var partialBytes = (this.blockSize - inputLength) % this.blockSize; | |
if(partialBytes > 0) { | |
partialBytes = this.blockSize - partialBytes; | |
} | |
// XOR input with output, write input as partial output | |
this._partialOutput.clear(); | |
for(var i = 0; i < this._ints; ++i) { | |
this._partialBlock[i] = input.getInt32(); | |
this._partialOutput.putInt32(this._partialBlock[i] ^ this._outBlock[i]); | |
} | |
if(partialBytes > 0) { | |
// block still incomplete, restore input buffer | |
input.read -= this.blockSize; | |
} else { | |
// block complete, update input block | |
for(var i = 0; i < this._ints; ++i) { | |
this._inBlock[i] = this._partialBlock[i]; | |
} | |
} | |
// skip any previous partial bytes | |
if(this._partialBytes > 0) { | |
this._partialOutput.getBytes(this._partialBytes); | |
} | |
if(partialBytes > 0 && !finish) { | |
output.putBytes(this._partialOutput.getBytes( | |
partialBytes - this._partialBytes)); | |
this._partialBytes = partialBytes; | |
return true; | |
} | |
output.putBytes(this._partialOutput.getBytes( | |
inputLength - this._partialBytes)); | |
this._partialBytes = 0; | |
}; | |
/** Output feedback (OFB) **/ | |
modes.ofb = function(options) { | |
options = options || {}; | |
this.name = 'OFB'; | |
this.cipher = options.cipher; | |
this.blockSize = options.blockSize || 16; | |
this._ints = this.blockSize / 4; | |
this._inBlock = null; | |
this._outBlock = new Array(this._ints); | |
this._partialOutput = forge.util.createBuffer(); | |
this._partialBytes = 0; | |
}; | |
modes.ofb.prototype.start = function(options) { | |
if(!('iv' in options)) { | |
throw new Error('Invalid IV parameter.'); | |
} | |
// use IV as first input | |
this._iv = transformIV(options.iv, this.blockSize); | |
this._inBlock = this._iv.slice(0); | |
this._partialBytes = 0; | |
}; | |
modes.ofb.prototype.encrypt = function(input, output, finish) { | |
// not enough input to encrypt | |
var inputLength = input.length(); | |
if(input.length() === 0) { | |
return true; | |
} | |
// encrypt block (OFB always uses encryption mode) | |
this.cipher.encrypt(this._inBlock, this._outBlock); | |
// handle full block | |
if(this._partialBytes === 0 && inputLength >= this.blockSize) { | |
// XOR input with output and update next input | |
for(var i = 0; i < this._ints; ++i) { | |
output.putInt32(input.getInt32() ^ this._outBlock[i]); | |
this._inBlock[i] = this._outBlock[i]; | |
} | |
return; | |
} | |
// handle partial block | |
var partialBytes = (this.blockSize - inputLength) % this.blockSize; | |
if(partialBytes > 0) { | |
partialBytes = this.blockSize - partialBytes; | |
} | |
// XOR input with output | |
this._partialOutput.clear(); | |
for(var i = 0; i < this._ints; ++i) { | |
this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]); | |
} | |
if(partialBytes > 0) { | |
// block still incomplete, restore input buffer | |
input.read -= this.blockSize; | |
} else { | |
// block complete, update input block | |
for(var i = 0; i < this._ints; ++i) { | |
this._inBlock[i] = this._outBlock[i]; | |
} | |
} | |
// skip any previous partial bytes | |
if(this._partialBytes > 0) { | |
this._partialOutput.getBytes(this._partialBytes); | |
} | |
if(partialBytes > 0 && !finish) { | |
output.putBytes(this._partialOutput.getBytes( | |
partialBytes - this._partialBytes)); | |
this._partialBytes = partialBytes; | |
return true; | |
} | |
output.putBytes(this._partialOutput.getBytes( | |
inputLength - this._partialBytes)); | |
this._partialBytes = 0; | |
}; | |
modes.ofb.prototype.decrypt = modes.ofb.prototype.encrypt; | |
/** Counter (CTR) **/ | |
modes.ctr = function(options) { | |
options = options || {}; | |
this.name = 'CTR'; | |
this.cipher = options.cipher; | |
this.blockSize = options.blockSize || 16; | |
this._ints = this.blockSize / 4; | |
this._inBlock = null; | |
this._outBlock = new Array(this._ints); | |
this._partialOutput = forge.util.createBuffer(); | |
this._partialBytes = 0; | |
}; | |
modes.ctr.prototype.start = function(options) { | |
if(!('iv' in options)) { | |
throw new Error('Invalid IV parameter.'); | |
} | |
// use IV as first input | |
this._iv = transformIV(options.iv, this.blockSize); | |
this._inBlock = this._iv.slice(0); | |
this._partialBytes = 0; | |
}; | |
modes.ctr.prototype.encrypt = function(input, output, finish) { | |
// not enough input to encrypt | |
var inputLength = input.length(); | |
if(inputLength === 0) { | |
return true; | |
} | |
// encrypt block (CTR always uses encryption mode) | |
this.cipher.encrypt(this._inBlock, this._outBlock); | |
// handle full block | |
if(this._partialBytes === 0 && inputLength >= this.blockSize) { | |
// XOR input with output | |
for(var i = 0; i < this._ints; ++i) { | |
output.putInt32(input.getInt32() ^ this._outBlock[i]); | |
} | |
} else { | |
// handle partial block | |
var partialBytes = (this.blockSize - inputLength) % this.blockSize; | |
if(partialBytes > 0) { | |
partialBytes = this.blockSize - partialBytes; | |
} | |
// XOR input with output | |
this._partialOutput.clear(); | |
for(var i = 0; i < this._ints; ++i) { | |
this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]); | |
} | |
if(partialBytes > 0) { | |
// block still incomplete, restore input buffer | |
input.read -= this.blockSize; | |
} | |
// skip any previous partial bytes | |
if(this._partialBytes > 0) { | |
this._partialOutput.getBytes(this._partialBytes); | |
} | |
if(partialBytes > 0 && !finish) { | |
output.putBytes(this._partialOutput.getBytes( | |
partialBytes - this._partialBytes)); | |
this._partialBytes = partialBytes; | |
return true; | |
} | |
output.putBytes(this._partialOutput.getBytes( | |
inputLength - this._partialBytes)); | |
this._partialBytes = 0; | |
} | |
// block complete, increment counter (input block) | |
inc32(this._inBlock); | |
}; | |
modes.ctr.prototype.decrypt = modes.ctr.prototype.encrypt; | |
/** Galois/Counter Mode (GCM) **/ | |
modes.gcm = function(options) { | |
options = options || {}; | |
this.name = 'GCM'; | |
this.cipher = options.cipher; | |
this.blockSize = options.blockSize || 16; | |
this._ints = this.blockSize / 4; | |
this._inBlock = new Array(this._ints); | |
this._outBlock = new Array(this._ints); | |
this._partialOutput = forge.util.createBuffer(); | |
this._partialBytes = 0; | |
// R is actually this value concatenated with 120 more zero bits, but | |
// we only XOR against R so the other zeros have no effect -- we just | |
// apply this value to the first integer in a block | |
this._R = 0xE1000000; | |
}; | |
modes.gcm.prototype.start = function(options) { | |
if(!('iv' in options)) { | |
throw new Error('Invalid IV parameter.'); | |
} | |
// ensure IV is a byte buffer | |
var iv = forge.util.createBuffer(options.iv); | |
// no ciphered data processed yet | |
this._cipherLength = 0; | |
// default additional data is none | |
var additionalData; | |
if('additionalData' in options) { | |
additionalData = forge.util.createBuffer(options.additionalData); | |
} else { | |
additionalData = forge.util.createBuffer(); | |
} | |
// default tag length is 128 bits | |
if('tagLength' in options) { | |
this._tagLength = options.tagLength; | |
} else { | |
this._tagLength = 128; | |
} | |
// if tag is given, ensure tag matches tag length | |
this._tag = null; | |
if(options.decrypt) { | |
// save tag to check later | |
this._tag = forge.util.createBuffer(options.tag).getBytes(); | |
if(this._tag.length !== (this._tagLength / 8)) { | |
throw new Error('Authentication tag does not match tag length.'); | |
} | |
} | |
// create tmp storage for hash calculation | |
this._hashBlock = new Array(this._ints); | |
// no tag generated yet | |
this.tag = null; | |
// generate hash subkey | |
// (apply block cipher to "zero" block) | |
this._hashSubkey = new Array(this._ints); | |
this.cipher.encrypt([0, 0, 0, 0], this._hashSubkey); | |
// generate table M | |
// use 4-bit tables (32 component decomposition of a 16 byte value) | |
// 8-bit tables take more space and are known to have security | |
// vulnerabilities (in native implementations) | |
this.componentBits = 4; | |
this._m = this.generateHashTable(this._hashSubkey, this.componentBits); | |
// Note: support IV length different from 96 bits? (only supporting | |
// 96 bits is recommended by NIST SP-800-38D) | |
// generate J_0 | |
var ivLength = iv.length(); | |
if(ivLength === 12) { | |
// 96-bit IV | |
this._j0 = [iv.getInt32(), iv.getInt32(), iv.getInt32(), 1]; | |
} else { | |
// IV is NOT 96-bits | |
this._j0 = [0, 0, 0, 0]; | |
while(iv.length() > 0) { | |
this._j0 = this.ghash( | |
this._hashSubkey, this._j0, | |
[iv.getInt32(), iv.getInt32(), iv.getInt32(), iv.getInt32()]); | |
} | |
this._j0 = this.ghash( | |
this._hashSubkey, this._j0, [0, 0].concat(from64To32(ivLength * 8))); | |
} | |
// generate ICB (initial counter block) | |
this._inBlock = this._j0.slice(0); | |
inc32(this._inBlock); | |
this._partialBytes = 0; | |
// consume authentication data | |
additionalData = forge.util.createBuffer(additionalData); | |
// save additional data length as a BE 64-bit number | |
this._aDataLength = from64To32(additionalData.length() * 8); | |
// pad additional data to 128 bit (16 byte) block size | |
var overflow = additionalData.length() % this.blockSize; | |
if(overflow) { | |
additionalData.fillWithByte(0, this.blockSize - overflow); | |
} | |
this._s = [0, 0, 0, 0]; | |
while(additionalData.length() > 0) { | |
this._s = this.ghash(this._hashSubkey, this._s, [ | |
additionalData.getInt32(), | |
additionalData.getInt32(), | |
additionalData.getInt32(), | |
additionalData.getInt32() | |
]); | |
} | |
}; | |
modes.gcm.prototype.encrypt = function(input, output, finish) { | |
// not enough input to encrypt | |
var inputLength = input.length(); | |
if(inputLength === 0) { | |
return true; | |
} | |
// encrypt block | |
this.cipher.encrypt(this._inBlock, this._outBlock); | |
// handle full block | |
if(this._partialBytes === 0 && inputLength >= this.blockSize) { | |
// XOR input with output | |
for(var i = 0; i < this._ints; ++i) { | |
output.putInt32(this._outBlock[i] ^= input.getInt32()); | |
} | |
this._cipherLength += this.blockSize; | |
} else { | |
// handle partial block | |
var partialBytes = (this.blockSize - inputLength) % this.blockSize; | |
if(partialBytes > 0) { | |
partialBytes = this.blockSize - partialBytes; | |
} | |
// XOR input with output | |
this._partialOutput.clear(); | |
for(var i = 0; i < this._ints; ++i) { | |
this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]); | |
} | |
if(partialBytes <= 0 || finish) { | |
// handle overflow prior to hashing | |
if(finish) { | |
// get block overflow | |
var overflow = inputLength % this.blockSize; | |
this._cipherLength += overflow; | |
// truncate for hash function | |
this._partialOutput.truncate(this.blockSize - overflow); | |
} else { | |
this._cipherLength += this.blockSize; | |
} | |
// get output block for hashing | |
for(var i = 0; i < this._ints; ++i) { | |
this._outBlock[i] = this._partialOutput.getInt32(); | |
} | |
this._partialOutput.read -= this.blockSize; | |
} | |
// skip any previous partial bytes | |
if(this._partialBytes > 0) { | |
this._partialOutput.getBytes(this._partialBytes); | |
} | |
if(partialBytes > 0 && !finish) { | |
// block still incomplete, restore input buffer, get partial output, | |
// and return early | |
input.read -= this.blockSize; | |
output.putBytes(this._partialOutput.getBytes( | |
partialBytes - this._partialBytes)); | |
this._partialBytes = partialBytes; | |
return true; | |
} | |
output.putBytes(this._partialOutput.getBytes( | |
inputLength - this._partialBytes)); | |
this._partialBytes = 0; | |
} | |
// update hash block S | |
this._s = this.ghash(this._hashSubkey, this._s, this._outBlock); | |
// increment counter (input block) | |
inc32(this._inBlock); | |
}; | |
modes.gcm.prototype.decrypt = function(input, output, finish) { | |
// not enough input to decrypt | |
var inputLength = input.length(); | |
if(inputLength < this.blockSize && !(finish && inputLength > 0)) { | |
return true; | |
} | |
// encrypt block (GCM always uses encryption mode) | |
this.cipher.encrypt(this._inBlock, this._outBlock); | |
// increment counter (input block) | |
inc32(this._inBlock); | |
// update hash block S | |
this._hashBlock[0] = input.getInt32(); | |
this._hashBlock[1] = input.getInt32(); | |
this._hashBlock[2] = input.getInt32(); | |
this._hashBlock[3] = input.getInt32(); | |
this._s = this.ghash(this._hashSubkey, this._s, this._hashBlock); | |
// XOR hash input with output | |
for(var i = 0; i < this._ints; ++i) { | |
output.putInt32(this._outBlock[i] ^ this._hashBlock[i]); | |
} | |
// increment cipher data length | |
if(inputLength < this.blockSize) { | |
this._cipherLength += inputLength % this.blockSize; | |
} else { | |
this._cipherLength += this.blockSize; | |
} | |
}; | |
modes.gcm.prototype.afterFinish = function(output, options) { | |
var rval = true; | |
// handle overflow | |
if(options.decrypt && options.overflow) { | |
output.truncate(this.blockSize - options.overflow); | |
} | |
// handle authentication tag | |
this.tag = forge.util.createBuffer(); | |
// concatenate additional data length with cipher length | |
var lengths = this._aDataLength.concat(from64To32(this._cipherLength * 8)); | |
// include lengths in hash | |
this._s = this.ghash(this._hashSubkey, this._s, lengths); | |
// do GCTR(J_0, S) | |
var tag = []; | |
this.cipher.encrypt(this._j0, tag); | |
for(var i = 0; i < this._ints; ++i) { | |
this.tag.putInt32(this._s[i] ^ tag[i]); | |
} | |
// trim tag to length | |
this.tag.truncate(this.tag.length() % (this._tagLength / 8)); | |
// check authentication tag | |
if(options.decrypt && this.tag.bytes() !== this._tag) { | |
rval = false; | |
} | |
return rval; | |
}; | |
/** | |
* See NIST SP-800-38D 6.3 (Algorithm 1). This function performs Galois | |
* field multiplication. The field, GF(2^128), is defined by the polynomial: | |
* | |
* x^128 + x^7 + x^2 + x + 1 | |
* | |
* Which is represented in little-endian binary form as: 11100001 (0xe1). When | |
* the value of a coefficient is 1, a bit is set. The value R, is the | |
* concatenation of this value and 120 zero bits, yielding a 128-bit value | |
* which matches the block size. | |
* | |
* This function will multiply two elements (vectors of bytes), X and Y, in | |
* the field GF(2^128). The result is initialized to zero. For each bit of | |
* X (out of 128), x_i, if x_i is set, then the result is multiplied (XOR'd) | |
* by the current value of Y. For each bit, the value of Y will be raised by | |
* a power of x (multiplied by the polynomial x). This can be achieved by | |
* shifting Y once to the right. If the current value of Y, prior to being | |
* multiplied by x, has 0 as its LSB, then it is a 127th degree polynomial. | |
* Otherwise, we must divide by R after shifting to find the remainder. | |
* | |
* @param x the first block to multiply by the second. | |
* @param y the second block to multiply by the first. | |
* | |
* @return the block result of the multiplication. | |
*/ | |
modes.gcm.prototype.multiply = function(x, y) { | |
var z_i = [0, 0, 0, 0]; | |
var v_i = y.slice(0); | |
// calculate Z_128 (block has 128 bits) | |
for(var i = 0; i < 128; ++i) { | |
// if x_i is 0, Z_{i+1} = Z_i (unchanged) | |
// else Z_{i+1} = Z_i ^ V_i | |
// get x_i by finding 32-bit int position, then left shift 1 by remainder | |
var x_i = x[(i / 32) | 0] & (1 << (31 - i % 32)); | |
if(x_i) { | |
z_i[0] ^= v_i[0]; | |
z_i[1] ^= v_i[1]; | |
z_i[2] ^= v_i[2]; | |
z_i[3] ^= v_i[3]; | |
} | |
// if LSB(V_i) is 1, V_i = V_i >> 1 | |
// else V_i = (V_i >> 1) ^ R | |
this.pow(v_i, v_i); | |
} | |
return z_i; | |
}; | |
modes.gcm.prototype.pow = function(x, out) { | |
// if LSB(x) is 1, x = x >>> 1 | |
// else x = (x >>> 1) ^ R | |
var lsb = x[3] & 1; | |
// always do x >>> 1: | |
// starting with the rightmost integer, shift each integer to the right | |
// one bit, pulling in the bit from the integer to the left as its top | |
// most bit (do this for the last 3 integers) | |
for(var i = 3; i > 0; --i) { | |
out[i] = (x[i] >>> 1) | ((x[i - 1] & 1) << 31); | |
} | |
// shift the first integer normally | |
out[0] = x[0] >>> 1; | |
// if lsb was not set, then polynomial had a degree of 127 and doesn't | |
// need to divided; otherwise, XOR with R to find the remainder; we only | |
// need to XOR the first integer since R technically ends w/120 zero bits | |
if(lsb) { | |
out[0] ^= this._R; | |
} | |
}; | |
modes.gcm.prototype.tableMultiply = function(x) { | |
// assumes 4-bit tables are used | |
var z = [0, 0, 0, 0]; | |
for(var i = 0; i < 32; ++i) { | |
var idx = (i / 8) | 0; | |
var x_i = (x[idx] >>> ((7 - (i % 8)) * 4)) & 0xF; | |
var ah = this._m[i][x_i]; | |
z[0] ^= ah[0]; | |
z[1] ^= ah[1]; | |
z[2] ^= ah[2]; | |
z[3] ^= ah[3]; | |
} | |
return z; | |
}; | |
/** | |
* A continuing version of the GHASH algorithm that operates on a single | |
* block. The hash block, last hash value (Ym) and the new block to hash | |
* are given. | |
* | |
* @param h the hash block. | |
* @param y the previous value for Ym, use [0, 0, 0, 0] for a new hash. | |
* @param x the block to hash. | |
* | |
* @return the hashed value (Ym). | |
*/ | |
modes.gcm.prototype.ghash = function(h, y, x) { | |
y[0] ^= x[0]; | |
y[1] ^= x[1]; | |
y[2] ^= x[2]; | |
y[3] ^= x[3]; | |
return this.tableMultiply(y); | |
//return this.multiply(y, h); | |
}; | |
/** | |
* Precomputes a table for multiplying against the hash subkey. This | |
* mechanism provides a substantial speed increase over multiplication | |
* performed without a table. The table-based multiplication this table is | |
* for solves X * H by multiplying each component of X by H and then | |
* composing the results together using XOR. | |
* | |
* This function can be used to generate tables with different bit sizes | |
* for the components, however, this implementation assumes there are | |
* 32 components of X (which is a 16 byte vector), therefore each component | |
* takes 4-bits (so the table is constructed with bits=4). | |
* | |
* @param h the hash subkey. | |
* @param bits the bit size for a component. | |
*/ | |
modes.gcm.prototype.generateHashTable = function(h, bits) { | |
// TODO: There are further optimizations that would use only the | |
// first table M_0 (or some variant) along with a remainder table; | |
// this can be explored in the future | |
var multiplier = 8 / bits; | |
var perInt = 4 * multiplier; | |
var size = 16 * multiplier; | |
var m = new Array(size); | |
for(var i = 0; i < size; ++i) { | |
var tmp = [0, 0, 0, 0]; | |
var idx = (i / perInt) | 0; | |
var shft = ((perInt - 1 - (i % perInt)) * bits); | |
tmp[idx] = (1 << (bits - 1)) << shft; | |
m[i] = this.generateSubHashTable(this.multiply(tmp, h), bits); | |
} | |
return m; | |
}; | |
/** | |
* Generates a table for multiplying against the hash subkey for one | |
* particular component (out of all possible component values). | |
* | |
* @param mid the pre-multiplied value for the middle key of the table. | |
* @param bits the bit size for a component. | |
*/ | |
modes.gcm.prototype.generateSubHashTable = function(mid, bits) { | |
// compute the table quickly by minimizing the number of | |
// POW operations -- they only need to be performed for powers of 2, | |
// all other entries can be composed from those powers using XOR | |
var size = 1 << bits; | |
var half = size >>> 1; | |
var m = new Array(size); | |
m[half] = mid.slice(0); | |
var i = half >>> 1; | |
while(i > 0) { | |
// raise m0[2 * i] and store in m0[i] | |
this.pow(m[2 * i], m[i] = []); | |
i >>= 1; | |
} | |
i = 2; | |
while(i < half) { | |
for(var j = 1; j < i; ++j) { | |
var m_i = m[i]; | |
var m_j = m[j]; | |
m[i + j] = [ | |
m_i[0] ^ m_j[0], | |
m_i[1] ^ m_j[1], | |
m_i[2] ^ m_j[2], | |
m_i[3] ^ m_j[3] | |
]; | |
} | |
i *= 2; | |
} | |
m[0] = [0, 0, 0, 0]; | |
/* Note: We could avoid storing these by doing composition during multiply | |
calculate top half using composition by speed is preferred. */ | |
for(i = half + 1; i < size; ++i) { | |
var c = m[i ^ half]; | |
m[i] = [mid[0] ^ c[0], mid[1] ^ c[1], mid[2] ^ c[2], mid[3] ^ c[3]]; | |
} | |
return m; | |
}; | |
/** Utility functions */ | |
function transformIV(iv, blockSize) { | |
if(typeof iv === 'string') { | |
// convert iv string into byte buffer | |
iv = forge.util.createBuffer(iv); | |
} | |
if(forge.util.isArray(iv) && iv.length > 4) { | |
// convert iv byte array into byte buffer | |
var tmp = iv; | |
iv = forge.util.createBuffer(); | |
for(var i = 0; i < tmp.length; ++i) { | |
iv.putByte(tmp[i]); | |
} | |
} | |
if(iv.length() < blockSize) { | |
throw new Error( | |
'Invalid IV length; got ' + iv.length() + | |
' bytes and expected ' + blockSize + ' bytes.'); | |
} | |
if(!forge.util.isArray(iv)) { | |
// convert iv byte buffer into 32-bit integer array | |
var ints = []; | |
var blocks = blockSize / 4; | |
for(var i = 0; i < blocks; ++i) { | |
ints.push(iv.getInt32()); | |
} | |
iv = ints; | |
} | |
return iv; | |
} | |
function inc32(block) { | |
// increment last 32 bits of block only | |
block[block.length - 1] = (block[block.length - 1] + 1) & 0xFFFFFFFF; | |
} | |
function from64To32(num) { | |
// convert 64-bit number to two BE Int32s | |
return [(num / 0x100000000) | 0, num & 0xFFFFFFFF]; | |
} | |