Spaces:
Configuration error
Configuration error
// Copyright (c) 2005 Tom Wu | |
// All Rights Reserved. | |
// See "LICENSE" for details. | |
// Basic JavaScript BN library - subset useful for RSA encryption. | |
/* | |
Licensing (LICENSE) | |
------------------- | |
This software is covered under the following copyright: | |
*/ | |
/* | |
* Copyright (c) 2003-2005 Tom Wu | |
* All Rights Reserved. | |
* | |
* Permission is hereby granted, free of charge, to any person obtaining | |
* a copy of this software and associated documentation files (the | |
* "Software"), to deal in the Software without restriction, including | |
* without limitation the rights to use, copy, modify, merge, publish, | |
* distribute, sublicense, and/or sell copies of the Software, and to | |
* permit persons to whom the Software is furnished to do so, subject to | |
* the following conditions: | |
* | |
* The above copyright notice and this permission notice shall be | |
* included in all copies or substantial portions of the Software. | |
* | |
* THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, | |
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY | |
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. | |
* | |
* IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, | |
* INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER | |
* RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF | |
* THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT | |
* OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | |
* | |
* In addition, the following condition applies: | |
* | |
* All redistributions must retain an intact copy of this copyright notice | |
* and disclaimer. | |
*/ | |
/* | |
Address all questions regarding this license to: | |
Tom Wu | |
[email protected] | |
*/ | |
var forge = require('./forge'); | |
module.exports = forge.jsbn = forge.jsbn || {}; | |
// Bits per digit | |
var dbits; | |
// JavaScript engine analysis | |
var canary = 0xdeadbeefcafe; | |
var j_lm = ((canary&0xffffff)==0xefcafe); | |
// (public) Constructor | |
function BigInteger(a,b,c) { | |
this.data = []; | |
if(a != null) | |
if("number" == typeof a) this.fromNumber(a,b,c); | |
else if(b == null && "string" != typeof a) this.fromString(a,256); | |
else this.fromString(a,b); | |
} | |
forge.jsbn.BigInteger = BigInteger; | |
// return new, unset BigInteger | |
function nbi() { return new BigInteger(null); } | |
// am: Compute w_j += (x*this_i), propagate carries, | |
// c is initial carry, returns final carry. | |
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue | |
// We need to select the fastest one that works in this environment. | |
// am1: use a single mult and divide to get the high bits, | |
// max digit bits should be 26 because | |
// max internal value = 2*dvalue^2-2*dvalue (< 2^53) | |
function am1(i,x,w,j,c,n) { | |
while(--n >= 0) { | |
var v = x*this.data[i++]+w.data[j]+c; | |
c = Math.floor(v/0x4000000); | |
w.data[j++] = v&0x3ffffff; | |
} | |
return c; | |
} | |
// am2 avoids a big mult-and-extract completely. | |
// Max digit bits should be <= 30 because we do bitwise ops | |
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) | |
function am2(i,x,w,j,c,n) { | |
var xl = x&0x7fff, xh = x>>15; | |
while(--n >= 0) { | |
var l = this.data[i]&0x7fff; | |
var h = this.data[i++]>>15; | |
var m = xh*l+h*xl; | |
l = xl*l+((m&0x7fff)<<15)+w.data[j]+(c&0x3fffffff); | |
c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); | |
w.data[j++] = l&0x3fffffff; | |
} | |
return c; | |
} | |
// Alternately, set max digit bits to 28 since some | |
// browsers slow down when dealing with 32-bit numbers. | |
function am3(i,x,w,j,c,n) { | |
var xl = x&0x3fff, xh = x>>14; | |
while(--n >= 0) { | |
var l = this.data[i]&0x3fff; | |
var h = this.data[i++]>>14; | |
var m = xh*l+h*xl; | |
l = xl*l+((m&0x3fff)<<14)+w.data[j]+c; | |
c = (l>>28)+(m>>14)+xh*h; | |
w.data[j++] = l&0xfffffff; | |
} | |
return c; | |
} | |
// node.js (no browser) | |
if(typeof(navigator) === 'undefined') | |
{ | |
BigInteger.prototype.am = am3; | |
dbits = 28; | |
} else if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) { | |
BigInteger.prototype.am = am2; | |
dbits = 30; | |
} else if(j_lm && (navigator.appName != "Netscape")) { | |
BigInteger.prototype.am = am1; | |
dbits = 26; | |
} else { // Mozilla/Netscape seems to prefer am3 | |
BigInteger.prototype.am = am3; | |
dbits = 28; | |
} | |
BigInteger.prototype.DB = dbits; | |
BigInteger.prototype.DM = ((1<<dbits)-1); | |
BigInteger.prototype.DV = (1<<dbits); | |
var BI_FP = 52; | |
BigInteger.prototype.FV = Math.pow(2,BI_FP); | |
BigInteger.prototype.F1 = BI_FP-dbits; | |
BigInteger.prototype.F2 = 2*dbits-BI_FP; | |
// Digit conversions | |
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; | |
var BI_RC = new Array(); | |
var rr,vv; | |
rr = "0".charCodeAt(0); | |
for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; | |
rr = "a".charCodeAt(0); | |
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; | |
rr = "A".charCodeAt(0); | |
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; | |
function int2char(n) { return BI_RM.charAt(n); } | |
function intAt(s,i) { | |
var c = BI_RC[s.charCodeAt(i)]; | |
return (c==null)?-1:c; | |
} | |
// (protected) copy this to r | |
function bnpCopyTo(r) { | |
for(var i = this.t-1; i >= 0; --i) r.data[i] = this.data[i]; | |
r.t = this.t; | |
r.s = this.s; | |
} | |
// (protected) set from integer value x, -DV <= x < DV | |
function bnpFromInt(x) { | |
this.t = 1; | |
this.s = (x<0)?-1:0; | |
if(x > 0) this.data[0] = x; | |
else if(x < -1) this.data[0] = x+this.DV; | |
else this.t = 0; | |
} | |
// return bigint initialized to value | |
function nbv(i) { var r = nbi(); r.fromInt(i); return r; } | |
// (protected) set from string and radix | |
function bnpFromString(s,b) { | |
var k; | |
if(b == 16) k = 4; | |
else if(b == 8) k = 3; | |
else if(b == 256) k = 8; // byte array | |
else if(b == 2) k = 1; | |
else if(b == 32) k = 5; | |
else if(b == 4) k = 2; | |
else { this.fromRadix(s,b); return; } | |
this.t = 0; | |
this.s = 0; | |
var i = s.length, mi = false, sh = 0; | |
while(--i >= 0) { | |
var x = (k==8)?s[i]&0xff:intAt(s,i); | |
if(x < 0) { | |
if(s.charAt(i) == "-") mi = true; | |
continue; | |
} | |
mi = false; | |
if(sh == 0) | |
this.data[this.t++] = x; | |
else if(sh+k > this.DB) { | |
this.data[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh; | |
this.data[this.t++] = (x>>(this.DB-sh)); | |
} else | |
this.data[this.t-1] |= x<<sh; | |
sh += k; | |
if(sh >= this.DB) sh -= this.DB; | |
} | |
if(k == 8 && (s[0]&0x80) != 0) { | |
this.s = -1; | |
if(sh > 0) this.data[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh; | |
} | |
this.clamp(); | |
if(mi) BigInteger.ZERO.subTo(this,this); | |
} | |
// (protected) clamp off excess high words | |
function bnpClamp() { | |
var c = this.s&this.DM; | |
while(this.t > 0 && this.data[this.t-1] == c) --this.t; | |
} | |
// (public) return string representation in given radix | |
function bnToString(b) { | |
if(this.s < 0) return "-"+this.negate().toString(b); | |
var k; | |
if(b == 16) k = 4; | |
else if(b == 8) k = 3; | |
else if(b == 2) k = 1; | |
else if(b == 32) k = 5; | |
else if(b == 4) k = 2; | |
else return this.toRadix(b); | |
var km = (1<<k)-1, d, m = false, r = "", i = this.t; | |
var p = this.DB-(i*this.DB)%k; | |
if(i-- > 0) { | |
if(p < this.DB && (d = this.data[i]>>p) > 0) { m = true; r = int2char(d); } | |
while(i >= 0) { | |
if(p < k) { | |
d = (this.data[i]&((1<<p)-1))<<(k-p); | |
d |= this.data[--i]>>(p+=this.DB-k); | |
} else { | |
d = (this.data[i]>>(p-=k))&km; | |
if(p <= 0) { p += this.DB; --i; } | |
} | |
if(d > 0) m = true; | |
if(m) r += int2char(d); | |
} | |
} | |
return m?r:"0"; | |
} | |
// (public) -this | |
function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } | |
// (public) |this| | |
function bnAbs() { return (this.s<0)?this.negate():this; } | |
// (public) return + if this > a, - if this < a, 0 if equal | |
function bnCompareTo(a) { | |
var r = this.s-a.s; | |
if(r != 0) return r; | |
var i = this.t; | |
r = i-a.t; | |
if(r != 0) return (this.s<0)?-r:r; | |
while(--i >= 0) if((r=this.data[i]-a.data[i]) != 0) return r; | |
return 0; | |
} | |
// returns bit length of the integer x | |
function nbits(x) { | |
var r = 1, t; | |
if((t=x>>>16) != 0) { x = t; r += 16; } | |
if((t=x>>8) != 0) { x = t; r += 8; } | |
if((t=x>>4) != 0) { x = t; r += 4; } | |
if((t=x>>2) != 0) { x = t; r += 2; } | |
if((t=x>>1) != 0) { x = t; r += 1; } | |
return r; | |
} | |
// (public) return the number of bits in "this" | |
function bnBitLength() { | |
if(this.t <= 0) return 0; | |
return this.DB*(this.t-1)+nbits(this.data[this.t-1]^(this.s&this.DM)); | |
} | |
// (protected) r = this << n*DB | |
function bnpDLShiftTo(n,r) { | |
var i; | |
for(i = this.t-1; i >= 0; --i) r.data[i+n] = this.data[i]; | |
for(i = n-1; i >= 0; --i) r.data[i] = 0; | |
r.t = this.t+n; | |
r.s = this.s; | |
} | |
// (protected) r = this >> n*DB | |
function bnpDRShiftTo(n,r) { | |
for(var i = n; i < this.t; ++i) r.data[i-n] = this.data[i]; | |
r.t = Math.max(this.t-n,0); | |
r.s = this.s; | |
} | |
// (protected) r = this << n | |
function bnpLShiftTo(n,r) { | |
var bs = n%this.DB; | |
var cbs = this.DB-bs; | |
var bm = (1<<cbs)-1; | |
var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i; | |
for(i = this.t-1; i >= 0; --i) { | |
r.data[i+ds+1] = (this.data[i]>>cbs)|c; | |
c = (this.data[i]&bm)<<bs; | |
} | |
for(i = ds-1; i >= 0; --i) r.data[i] = 0; | |
r.data[ds] = c; | |
r.t = this.t+ds+1; | |
r.s = this.s; | |
r.clamp(); | |
} | |
// (protected) r = this >> n | |
function bnpRShiftTo(n,r) { | |
r.s = this.s; | |
var ds = Math.floor(n/this.DB); | |
if(ds >= this.t) { r.t = 0; return; } | |
var bs = n%this.DB; | |
var cbs = this.DB-bs; | |
var bm = (1<<bs)-1; | |
r.data[0] = this.data[ds]>>bs; | |
for(var i = ds+1; i < this.t; ++i) { | |
r.data[i-ds-1] |= (this.data[i]&bm)<<cbs; | |
r.data[i-ds] = this.data[i]>>bs; | |
} | |
if(bs > 0) r.data[this.t-ds-1] |= (this.s&bm)<<cbs; | |
r.t = this.t-ds; | |
r.clamp(); | |
} | |
// (protected) r = this - a | |
function bnpSubTo(a,r) { | |
var i = 0, c = 0, m = Math.min(a.t,this.t); | |
while(i < m) { | |
c += this.data[i]-a.data[i]; | |
r.data[i++] = c&this.DM; | |
c >>= this.DB; | |
} | |
if(a.t < this.t) { | |
c -= a.s; | |
while(i < this.t) { | |
c += this.data[i]; | |
r.data[i++] = c&this.DM; | |
c >>= this.DB; | |
} | |
c += this.s; | |
} else { | |
c += this.s; | |
while(i < a.t) { | |
c -= a.data[i]; | |
r.data[i++] = c&this.DM; | |
c >>= this.DB; | |
} | |
c -= a.s; | |
} | |
r.s = (c<0)?-1:0; | |
if(c < -1) r.data[i++] = this.DV+c; | |
else if(c > 0) r.data[i++] = c; | |
r.t = i; | |
r.clamp(); | |
} | |
// (protected) r = this * a, r != this,a (HAC 14.12) | |
// "this" should be the larger one if appropriate. | |
function bnpMultiplyTo(a,r) { | |
var x = this.abs(), y = a.abs(); | |
var i = x.t; | |
r.t = i+y.t; | |
while(--i >= 0) r.data[i] = 0; | |
for(i = 0; i < y.t; ++i) r.data[i+x.t] = x.am(0,y.data[i],r,i,0,x.t); | |
r.s = 0; | |
r.clamp(); | |
if(this.s != a.s) BigInteger.ZERO.subTo(r,r); | |
} | |
// (protected) r = this^2, r != this (HAC 14.16) | |
function bnpSquareTo(r) { | |
var x = this.abs(); | |
var i = r.t = 2*x.t; | |
while(--i >= 0) r.data[i] = 0; | |
for(i = 0; i < x.t-1; ++i) { | |
var c = x.am(i,x.data[i],r,2*i,0,1); | |
if((r.data[i+x.t]+=x.am(i+1,2*x.data[i],r,2*i+1,c,x.t-i-1)) >= x.DV) { | |
r.data[i+x.t] -= x.DV; | |
r.data[i+x.t+1] = 1; | |
} | |
} | |
if(r.t > 0) r.data[r.t-1] += x.am(i,x.data[i],r,2*i,0,1); | |
r.s = 0; | |
r.clamp(); | |
} | |
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) | |
// r != q, this != m. q or r may be null. | |
function bnpDivRemTo(m,q,r) { | |
var pm = m.abs(); | |
if(pm.t <= 0) return; | |
var pt = this.abs(); | |
if(pt.t < pm.t) { | |
if(q != null) q.fromInt(0); | |
if(r != null) this.copyTo(r); | |
return; | |
} | |
if(r == null) r = nbi(); | |
var y = nbi(), ts = this.s, ms = m.s; | |
var nsh = this.DB-nbits(pm.data[pm.t-1]); // normalize modulus | |
if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } else { pm.copyTo(y); pt.copyTo(r); } | |
var ys = y.t; | |
var y0 = y.data[ys-1]; | |
if(y0 == 0) return; | |
var yt = y0*(1<<this.F1)+((ys>1)?y.data[ys-2]>>this.F2:0); | |
var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2; | |
var i = r.t, j = i-ys, t = (q==null)?nbi():q; | |
y.dlShiftTo(j,t); | |
if(r.compareTo(t) >= 0) { | |
r.data[r.t++] = 1; | |
r.subTo(t,r); | |
} | |
BigInteger.ONE.dlShiftTo(ys,t); | |
t.subTo(y,y); // "negative" y so we can replace sub with am later | |
while(y.t < ys) y.data[y.t++] = 0; | |
while(--j >= 0) { | |
// Estimate quotient digit | |
var qd = (r.data[--i]==y0)?this.DM:Math.floor(r.data[i]*d1+(r.data[i-1]+e)*d2); | |
if((r.data[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out | |
y.dlShiftTo(j,t); | |
r.subTo(t,r); | |
while(r.data[i] < --qd) r.subTo(t,r); | |
} | |
} | |
if(q != null) { | |
r.drShiftTo(ys,q); | |
if(ts != ms) BigInteger.ZERO.subTo(q,q); | |
} | |
r.t = ys; | |
r.clamp(); | |
if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder | |
if(ts < 0) BigInteger.ZERO.subTo(r,r); | |
} | |
// (public) this mod a | |
function bnMod(a) { | |
var r = nbi(); | |
this.abs().divRemTo(a,null,r); | |
if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); | |
return r; | |
} | |
// Modular reduction using "classic" algorithm | |
function Classic(m) { this.m = m; } | |
function cConvert(x) { | |
if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); | |
else return x; | |
} | |
function cRevert(x) { return x; } | |
function cReduce(x) { x.divRemTo(this.m,null,x); } | |
function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } | |
function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } | |
Classic.prototype.convert = cConvert; | |
Classic.prototype.revert = cRevert; | |
Classic.prototype.reduce = cReduce; | |
Classic.prototype.mulTo = cMulTo; | |
Classic.prototype.sqrTo = cSqrTo; | |
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction | |
// justification: | |
// xy == 1 (mod m) | |
// xy = 1+km | |
// xy(2-xy) = (1+km)(1-km) | |
// x[y(2-xy)] = 1-k^2m^2 | |
// x[y(2-xy)] == 1 (mod m^2) | |
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 | |
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded. | |
// JS multiply "overflows" differently from C/C++, so care is needed here. | |
function bnpInvDigit() { | |
if(this.t < 1) return 0; | |
var x = this.data[0]; | |
if((x&1) == 0) return 0; | |
var y = x&3; // y == 1/x mod 2^2 | |
y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 | |
y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 | |
y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 | |
// last step - calculate inverse mod DV directly; | |
// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints | |
y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits | |
// we really want the negative inverse, and -DV < y < DV | |
return (y>0)?this.DV-y:-y; | |
} | |
// Montgomery reduction | |
function Montgomery(m) { | |
this.m = m; | |
this.mp = m.invDigit(); | |
this.mpl = this.mp&0x7fff; | |
this.mph = this.mp>>15; | |
this.um = (1<<(m.DB-15))-1; | |
this.mt2 = 2*m.t; | |
} | |
// xR mod m | |
function montConvert(x) { | |
var r = nbi(); | |
x.abs().dlShiftTo(this.m.t,r); | |
r.divRemTo(this.m,null,r); | |
if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); | |
return r; | |
} | |
// x/R mod m | |
function montRevert(x) { | |
var r = nbi(); | |
x.copyTo(r); | |
this.reduce(r); | |
return r; | |
} | |
// x = x/R mod m (HAC 14.32) | |
function montReduce(x) { | |
while(x.t <= this.mt2) // pad x so am has enough room later | |
x.data[x.t++] = 0; | |
for(var i = 0; i < this.m.t; ++i) { | |
// faster way of calculating u0 = x.data[i]*mp mod DV | |
var j = x.data[i]&0x7fff; | |
var u0 = (j*this.mpl+(((j*this.mph+(x.data[i]>>15)*this.mpl)&this.um)<<15))&x.DM; | |
// use am to combine the multiply-shift-add into one call | |
j = i+this.m.t; | |
x.data[j] += this.m.am(0,u0,x,i,0,this.m.t); | |
// propagate carry | |
while(x.data[j] >= x.DV) { x.data[j] -= x.DV; x.data[++j]++; } | |
} | |
x.clamp(); | |
x.drShiftTo(this.m.t,x); | |
if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); | |
} | |
// r = "x^2/R mod m"; x != r | |
function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } | |
// r = "xy/R mod m"; x,y != r | |
function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } | |
Montgomery.prototype.convert = montConvert; | |
Montgomery.prototype.revert = montRevert; | |
Montgomery.prototype.reduce = montReduce; | |
Montgomery.prototype.mulTo = montMulTo; | |
Montgomery.prototype.sqrTo = montSqrTo; | |
// (protected) true iff this is even | |
function bnpIsEven() { return ((this.t>0)?(this.data[0]&1):this.s) == 0; } | |
// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) | |
function bnpExp(e,z) { | |
if(e > 0xffffffff || e < 1) return BigInteger.ONE; | |
var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; | |
g.copyTo(r); | |
while(--i >= 0) { | |
z.sqrTo(r,r2); | |
if((e&(1<<i)) > 0) z.mulTo(r2,g,r); | |
else { var t = r; r = r2; r2 = t; } | |
} | |
return z.revert(r); | |
} | |
// (public) this^e % m, 0 <= e < 2^32 | |
function bnModPowInt(e,m) { | |
var z; | |
if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); | |
return this.exp(e,z); | |
} | |
// protected | |
BigInteger.prototype.copyTo = bnpCopyTo; | |
BigInteger.prototype.fromInt = bnpFromInt; | |
BigInteger.prototype.fromString = bnpFromString; | |
BigInteger.prototype.clamp = bnpClamp; | |
BigInteger.prototype.dlShiftTo = bnpDLShiftTo; | |
BigInteger.prototype.drShiftTo = bnpDRShiftTo; | |
BigInteger.prototype.lShiftTo = bnpLShiftTo; | |
BigInteger.prototype.rShiftTo = bnpRShiftTo; | |
BigInteger.prototype.subTo = bnpSubTo; | |
BigInteger.prototype.multiplyTo = bnpMultiplyTo; | |
BigInteger.prototype.squareTo = bnpSquareTo; | |
BigInteger.prototype.divRemTo = bnpDivRemTo; | |
BigInteger.prototype.invDigit = bnpInvDigit; | |
BigInteger.prototype.isEven = bnpIsEven; | |
BigInteger.prototype.exp = bnpExp; | |
// public | |
BigInteger.prototype.toString = bnToString; | |
BigInteger.prototype.negate = bnNegate; | |
BigInteger.prototype.abs = bnAbs; | |
BigInteger.prototype.compareTo = bnCompareTo; | |
BigInteger.prototype.bitLength = bnBitLength; | |
BigInteger.prototype.mod = bnMod; | |
BigInteger.prototype.modPowInt = bnModPowInt; | |
// "constants" | |
BigInteger.ZERO = nbv(0); | |
BigInteger.ONE = nbv(1); | |
// jsbn2 lib | |
//Copyright (c) 2005-2009 Tom Wu | |
//All Rights Reserved. | |
//See "LICENSE" for details (See jsbn.js for LICENSE). | |
//Extended JavaScript BN functions, required for RSA private ops. | |
//Version 1.1: new BigInteger("0", 10) returns "proper" zero | |
//(public) | |
function bnClone() { var r = nbi(); this.copyTo(r); return r; } | |
//(public) return value as integer | |
function bnIntValue() { | |
if(this.s < 0) { | |
if(this.t == 1) return this.data[0]-this.DV; | |
else if(this.t == 0) return -1; | |
} else if(this.t == 1) return this.data[0]; | |
else if(this.t == 0) return 0; | |
// assumes 16 < DB < 32 | |
return ((this.data[1]&((1<<(32-this.DB))-1))<<this.DB)|this.data[0]; | |
} | |
//(public) return value as byte | |
function bnByteValue() { return (this.t==0)?this.s:(this.data[0]<<24)>>24; } | |
//(public) return value as short (assumes DB>=16) | |
function bnShortValue() { return (this.t==0)?this.s:(this.data[0]<<16)>>16; } | |
//(protected) return x s.t. r^x < DV | |
function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); } | |
//(public) 0 if this == 0, 1 if this > 0 | |
function bnSigNum() { | |
if(this.s < 0) return -1; | |
else if(this.t <= 0 || (this.t == 1 && this.data[0] <= 0)) return 0; | |
else return 1; | |
} | |
//(protected) convert to radix string | |
function bnpToRadix(b) { | |
if(b == null) b = 10; | |
if(this.signum() == 0 || b < 2 || b > 36) return "0"; | |
var cs = this.chunkSize(b); | |
var a = Math.pow(b,cs); | |
var d = nbv(a), y = nbi(), z = nbi(), r = ""; | |
this.divRemTo(d,y,z); | |
while(y.signum() > 0) { | |
r = (a+z.intValue()).toString(b).substr(1) + r; | |
y.divRemTo(d,y,z); | |
} | |
return z.intValue().toString(b) + r; | |
} | |
//(protected) convert from radix string | |
function bnpFromRadix(s,b) { | |
this.fromInt(0); | |
if(b == null) b = 10; | |
var cs = this.chunkSize(b); | |
var d = Math.pow(b,cs), mi = false, j = 0, w = 0; | |
for(var i = 0; i < s.length; ++i) { | |
var x = intAt(s,i); | |
if(x < 0) { | |
if(s.charAt(i) == "-" && this.signum() == 0) mi = true; | |
continue; | |
} | |
w = b*w+x; | |
if(++j >= cs) { | |
this.dMultiply(d); | |
this.dAddOffset(w,0); | |
j = 0; | |
w = 0; | |
} | |
} | |
if(j > 0) { | |
this.dMultiply(Math.pow(b,j)); | |
this.dAddOffset(w,0); | |
} | |
if(mi) BigInteger.ZERO.subTo(this,this); | |
} | |
//(protected) alternate constructor | |
function bnpFromNumber(a,b,c) { | |
if("number" == typeof b) { | |
// new BigInteger(int,int,RNG) | |
if(a < 2) this.fromInt(1); | |
else { | |
this.fromNumber(a,c); | |
if(!this.testBit(a-1)) // force MSB set | |
this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this); | |
if(this.isEven()) this.dAddOffset(1,0); // force odd | |
while(!this.isProbablePrime(b)) { | |
this.dAddOffset(2,0); | |
if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this); | |
} | |
} | |
} else { | |
// new BigInteger(int,RNG) | |
var x = new Array(), t = a&7; | |
x.length = (a>>3)+1; | |
b.nextBytes(x); | |
if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0; | |
this.fromString(x,256); | |
} | |
} | |
//(public) convert to bigendian byte array | |
function bnToByteArray() { | |
var i = this.t, r = new Array(); | |
r[0] = this.s; | |
var p = this.DB-(i*this.DB)%8, d, k = 0; | |
if(i-- > 0) { | |
if(p < this.DB && (d = this.data[i]>>p) != (this.s&this.DM)>>p) | |
r[k++] = d|(this.s<<(this.DB-p)); | |
while(i >= 0) { | |
if(p < 8) { | |
d = (this.data[i]&((1<<p)-1))<<(8-p); | |
d |= this.data[--i]>>(p+=this.DB-8); | |
} else { | |
d = (this.data[i]>>(p-=8))&0xff; | |
if(p <= 0) { p += this.DB; --i; } | |
} | |
if((d&0x80) != 0) d |= -256; | |
if(k == 0 && (this.s&0x80) != (d&0x80)) ++k; | |
if(k > 0 || d != this.s) r[k++] = d; | |
} | |
} | |
return r; | |
} | |
function bnEquals(a) { return(this.compareTo(a)==0); } | |
function bnMin(a) { return(this.compareTo(a)<0)?this:a; } | |
function bnMax(a) { return(this.compareTo(a)>0)?this:a; } | |
//(protected) r = this op a (bitwise) | |
function bnpBitwiseTo(a,op,r) { | |
var i, f, m = Math.min(a.t,this.t); | |
for(i = 0; i < m; ++i) r.data[i] = op(this.data[i],a.data[i]); | |
if(a.t < this.t) { | |
f = a.s&this.DM; | |
for(i = m; i < this.t; ++i) r.data[i] = op(this.data[i],f); | |
r.t = this.t; | |
} else { | |
f = this.s&this.DM; | |
for(i = m; i < a.t; ++i) r.data[i] = op(f,a.data[i]); | |
r.t = a.t; | |
} | |
r.s = op(this.s,a.s); | |
r.clamp(); | |
} | |
//(public) this & a | |
function op_and(x,y) { return x&y; } | |
function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; } | |
//(public) this | a | |
function op_or(x,y) { return x|y; } | |
function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; } | |
//(public) this ^ a | |
function op_xor(x,y) { return x^y; } | |
function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; } | |
//(public) this & ~a | |
function op_andnot(x,y) { return x&~y; } | |
function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; } | |
//(public) ~this | |
function bnNot() { | |
var r = nbi(); | |
for(var i = 0; i < this.t; ++i) r.data[i] = this.DM&~this.data[i]; | |
r.t = this.t; | |
r.s = ~this.s; | |
return r; | |
} | |
//(public) this << n | |
function bnShiftLeft(n) { | |
var r = nbi(); | |
if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r); | |
return r; | |
} | |
//(public) this >> n | |
function bnShiftRight(n) { | |
var r = nbi(); | |
if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r); | |
return r; | |
} | |
//return index of lowest 1-bit in x, x < 2^31 | |
function lbit(x) { | |
if(x == 0) return -1; | |
var r = 0; | |
if((x&0xffff) == 0) { x >>= 16; r += 16; } | |
if((x&0xff) == 0) { x >>= 8; r += 8; } | |
if((x&0xf) == 0) { x >>= 4; r += 4; } | |
if((x&3) == 0) { x >>= 2; r += 2; } | |
if((x&1) == 0) ++r; | |
return r; | |
} | |
//(public) returns index of lowest 1-bit (or -1 if none) | |
function bnGetLowestSetBit() { | |
for(var i = 0; i < this.t; ++i) | |
if(this.data[i] != 0) return i*this.DB+lbit(this.data[i]); | |
if(this.s < 0) return this.t*this.DB; | |
return -1; | |
} | |
//return number of 1 bits in x | |
function cbit(x) { | |
var r = 0; | |
while(x != 0) { x &= x-1; ++r; } | |
return r; | |
} | |
//(public) return number of set bits | |
function bnBitCount() { | |
var r = 0, x = this.s&this.DM; | |
for(var i = 0; i < this.t; ++i) r += cbit(this.data[i]^x); | |
return r; | |
} | |
//(public) true iff nth bit is set | |
function bnTestBit(n) { | |
var j = Math.floor(n/this.DB); | |
if(j >= this.t) return(this.s!=0); | |
return((this.data[j]&(1<<(n%this.DB)))!=0); | |
} | |
//(protected) this op (1<<n) | |
function bnpChangeBit(n,op) { | |
var r = BigInteger.ONE.shiftLeft(n); | |
this.bitwiseTo(r,op,r); | |
return r; | |
} | |
//(public) this | (1<<n) | |
function bnSetBit(n) { return this.changeBit(n,op_or); } | |
//(public) this & ~(1<<n) | |
function bnClearBit(n) { return this.changeBit(n,op_andnot); } | |
//(public) this ^ (1<<n) | |
function bnFlipBit(n) { return this.changeBit(n,op_xor); } | |
//(protected) r = this + a | |
function bnpAddTo(a,r) { | |
var i = 0, c = 0, m = Math.min(a.t,this.t); | |
while(i < m) { | |
c += this.data[i]+a.data[i]; | |
r.data[i++] = c&this.DM; | |
c >>= this.DB; | |
} | |
if(a.t < this.t) { | |
c += a.s; | |
while(i < this.t) { | |
c += this.data[i]; | |
r.data[i++] = c&this.DM; | |
c >>= this.DB; | |
} | |
c += this.s; | |
} else { | |
c += this.s; | |
while(i < a.t) { | |
c += a.data[i]; | |
r.data[i++] = c&this.DM; | |
c >>= this.DB; | |
} | |
c += a.s; | |
} | |
r.s = (c<0)?-1:0; | |
if(c > 0) r.data[i++] = c; | |
else if(c < -1) r.data[i++] = this.DV+c; | |
r.t = i; | |
r.clamp(); | |
} | |
//(public) this + a | |
function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; } | |
//(public) this - a | |
function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; } | |
//(public) this * a | |
function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; } | |
//(public) this / a | |
function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; } | |
//(public) this % a | |
function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; } | |
//(public) [this/a,this%a] | |
function bnDivideAndRemainder(a) { | |
var q = nbi(), r = nbi(); | |
this.divRemTo(a,q,r); | |
return new Array(q,r); | |
} | |
//(protected) this *= n, this >= 0, 1 < n < DV | |
function bnpDMultiply(n) { | |
this.data[this.t] = this.am(0,n-1,this,0,0,this.t); | |
++this.t; | |
this.clamp(); | |
} | |
//(protected) this += n << w words, this >= 0 | |
function bnpDAddOffset(n,w) { | |
if(n == 0) return; | |
while(this.t <= w) this.data[this.t++] = 0; | |
this.data[w] += n; | |
while(this.data[w] >= this.DV) { | |
this.data[w] -= this.DV; | |
if(++w >= this.t) this.data[this.t++] = 0; | |
++this.data[w]; | |
} | |
} | |
//A "null" reducer | |
function NullExp() {} | |
function nNop(x) { return x; } | |
function nMulTo(x,y,r) { x.multiplyTo(y,r); } | |
function nSqrTo(x,r) { x.squareTo(r); } | |
NullExp.prototype.convert = nNop; | |
NullExp.prototype.revert = nNop; | |
NullExp.prototype.mulTo = nMulTo; | |
NullExp.prototype.sqrTo = nSqrTo; | |
//(public) this^e | |
function bnPow(e) { return this.exp(e,new NullExp()); } | |
//(protected) r = lower n words of "this * a", a.t <= n | |
//"this" should be the larger one if appropriate. | |
function bnpMultiplyLowerTo(a,n,r) { | |
var i = Math.min(this.t+a.t,n); | |
r.s = 0; // assumes a,this >= 0 | |
r.t = i; | |
while(i > 0) r.data[--i] = 0; | |
var j; | |
for(j = r.t-this.t; i < j; ++i) r.data[i+this.t] = this.am(0,a.data[i],r,i,0,this.t); | |
for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a.data[i],r,i,0,n-i); | |
r.clamp(); | |
} | |
//(protected) r = "this * a" without lower n words, n > 0 | |
//"this" should be the larger one if appropriate. | |
function bnpMultiplyUpperTo(a,n,r) { | |
--n; | |
var i = r.t = this.t+a.t-n; | |
r.s = 0; // assumes a,this >= 0 | |
while(--i >= 0) r.data[i] = 0; | |
for(i = Math.max(n-this.t,0); i < a.t; ++i) | |
r.data[this.t+i-n] = this.am(n-i,a.data[i],r,0,0,this.t+i-n); | |
r.clamp(); | |
r.drShiftTo(1,r); | |
} | |
//Barrett modular reduction | |
function Barrett(m) { | |
// setup Barrett | |
this.r2 = nbi(); | |
this.q3 = nbi(); | |
BigInteger.ONE.dlShiftTo(2*m.t,this.r2); | |
this.mu = this.r2.divide(m); | |
this.m = m; | |
} | |
function barrettConvert(x) { | |
if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m); | |
else if(x.compareTo(this.m) < 0) return x; | |
else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } | |
} | |
function barrettRevert(x) { return x; } | |
//x = x mod m (HAC 14.42) | |
function barrettReduce(x) { | |
x.drShiftTo(this.m.t-1,this.r2); | |
if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); } | |
this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3); | |
this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2); | |
while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1); | |
x.subTo(this.r2,x); | |
while(x.compareTo(this.m) >= 0) x.subTo(this.m,x); | |
} | |
//r = x^2 mod m; x != r | |
function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); } | |
//r = x*y mod m; x,y != r | |
function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } | |
Barrett.prototype.convert = barrettConvert; | |
Barrett.prototype.revert = barrettRevert; | |
Barrett.prototype.reduce = barrettReduce; | |
Barrett.prototype.mulTo = barrettMulTo; | |
Barrett.prototype.sqrTo = barrettSqrTo; | |
//(public) this^e % m (HAC 14.85) | |
function bnModPow(e,m) { | |
var i = e.bitLength(), k, r = nbv(1), z; | |
if(i <= 0) return r; | |
else if(i < 18) k = 1; | |
else if(i < 48) k = 3; | |
else if(i < 144) k = 4; | |
else if(i < 768) k = 5; | |
else k = 6; | |
if(i < 8) | |
z = new Classic(m); | |
else if(m.isEven()) | |
z = new Barrett(m); | |
else | |
z = new Montgomery(m); | |
// precomputation | |
var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1; | |
g[1] = z.convert(this); | |
if(k > 1) { | |
var g2 = nbi(); | |
z.sqrTo(g[1],g2); | |
while(n <= km) { | |
g[n] = nbi(); | |
z.mulTo(g2,g[n-2],g[n]); | |
n += 2; | |
} | |
} | |
var j = e.t-1, w, is1 = true, r2 = nbi(), t; | |
i = nbits(e.data[j])-1; | |
while(j >= 0) { | |
if(i >= k1) w = (e.data[j]>>(i-k1))&km; | |
else { | |
w = (e.data[j]&((1<<(i+1))-1))<<(k1-i); | |
if(j > 0) w |= e.data[j-1]>>(this.DB+i-k1); | |
} | |
n = k; | |
while((w&1) == 0) { w >>= 1; --n; } | |
if((i -= n) < 0) { i += this.DB; --j; } | |
if(is1) { // ret == 1, don't bother squaring or multiplying it | |
g[w].copyTo(r); | |
is1 = false; | |
} else { | |
while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; } | |
if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; } | |
z.mulTo(r2,g[w],r); | |
} | |
while(j >= 0 && (e.data[j]&(1<<i)) == 0) { | |
z.sqrTo(r,r2); t = r; r = r2; r2 = t; | |
if(--i < 0) { i = this.DB-1; --j; } | |
} | |
} | |
return z.revert(r); | |
} | |
//(public) gcd(this,a) (HAC 14.54) | |
function bnGCD(a) { | |
var x = (this.s<0)?this.negate():this.clone(); | |
var y = (a.s<0)?a.negate():a.clone(); | |
if(x.compareTo(y) < 0) { var t = x; x = y; y = t; } | |
var i = x.getLowestSetBit(), g = y.getLowestSetBit(); | |
if(g < 0) return x; | |
if(i < g) g = i; | |
if(g > 0) { | |
x.rShiftTo(g,x); | |
y.rShiftTo(g,y); | |
} | |
while(x.signum() > 0) { | |
if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x); | |
if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y); | |
if(x.compareTo(y) >= 0) { | |
x.subTo(y,x); | |
x.rShiftTo(1,x); | |
} else { | |
y.subTo(x,y); | |
y.rShiftTo(1,y); | |
} | |
} | |
if(g > 0) y.lShiftTo(g,y); | |
return y; | |
} | |
//(protected) this % n, n < 2^26 | |
function bnpModInt(n) { | |
if(n <= 0) return 0; | |
var d = this.DV%n, r = (this.s<0)?n-1:0; | |
if(this.t > 0) | |
if(d == 0) r = this.data[0]%n; | |
else for(var i = this.t-1; i >= 0; --i) r = (d*r+this.data[i])%n; | |
return r; | |
} | |
//(public) 1/this % m (HAC 14.61) | |
function bnModInverse(m) { | |
var ac = m.isEven(); | |
if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; | |
var u = m.clone(), v = this.clone(); | |
var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); | |
while(u.signum() != 0) { | |
while(u.isEven()) { | |
u.rShiftTo(1,u); | |
if(ac) { | |
if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); } | |
a.rShiftTo(1,a); | |
} else if(!b.isEven()) b.subTo(m,b); | |
b.rShiftTo(1,b); | |
} | |
while(v.isEven()) { | |
v.rShiftTo(1,v); | |
if(ac) { | |
if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); } | |
c.rShiftTo(1,c); | |
} else if(!d.isEven()) d.subTo(m,d); | |
d.rShiftTo(1,d); | |
} | |
if(u.compareTo(v) >= 0) { | |
u.subTo(v,u); | |
if(ac) a.subTo(c,a); | |
b.subTo(d,b); | |
} else { | |
v.subTo(u,v); | |
if(ac) c.subTo(a,c); | |
d.subTo(b,d); | |
} | |
} | |
if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; | |
if(d.compareTo(m) >= 0) return d.subtract(m); | |
if(d.signum() < 0) d.addTo(m,d); else return d; | |
if(d.signum() < 0) return d.add(m); else return d; | |
} | |
var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509]; | |
var lplim = (1<<26)/lowprimes[lowprimes.length-1]; | |
//(public) test primality with certainty >= 1-.5^t | |
function bnIsProbablePrime(t) { | |
var i, x = this.abs(); | |
if(x.t == 1 && x.data[0] <= lowprimes[lowprimes.length-1]) { | |
for(i = 0; i < lowprimes.length; ++i) | |
if(x.data[0] == lowprimes[i]) return true; | |
return false; | |
} | |
if(x.isEven()) return false; | |
i = 1; | |
while(i < lowprimes.length) { | |
var m = lowprimes[i], j = i+1; | |
while(j < lowprimes.length && m < lplim) m *= lowprimes[j++]; | |
m = x.modInt(m); | |
while(i < j) if(m%lowprimes[i++] == 0) return false; | |
} | |
return x.millerRabin(t); | |
} | |
//(protected) true if probably prime (HAC 4.24, Miller-Rabin) | |
function bnpMillerRabin(t) { | |
var n1 = this.subtract(BigInteger.ONE); | |
var k = n1.getLowestSetBit(); | |
if(k <= 0) return false; | |
var r = n1.shiftRight(k); | |
var prng = bnGetPrng(); | |
var a; | |
for(var i = 0; i < t; ++i) { | |
// select witness 'a' at random from between 1 and n1 | |
do { | |
a = new BigInteger(this.bitLength(), prng); | |
} | |
while(a.compareTo(BigInteger.ONE) <= 0 || a.compareTo(n1) >= 0); | |
var y = a.modPow(r,this); | |
if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { | |
var j = 1; | |
while(j++ < k && y.compareTo(n1) != 0) { | |
y = y.modPowInt(2,this); | |
if(y.compareTo(BigInteger.ONE) == 0) return false; | |
} | |
if(y.compareTo(n1) != 0) return false; | |
} | |
} | |
return true; | |
} | |
// get pseudo random number generator | |
function bnGetPrng() { | |
// create prng with api that matches BigInteger secure random | |
return { | |
// x is an array to fill with bytes | |
nextBytes: function(x) { | |
for(var i = 0; i < x.length; ++i) { | |
x[i] = Math.floor(Math.random() * 0x0100); | |
} | |
} | |
}; | |
} | |
//protected | |
BigInteger.prototype.chunkSize = bnpChunkSize; | |
BigInteger.prototype.toRadix = bnpToRadix; | |
BigInteger.prototype.fromRadix = bnpFromRadix; | |
BigInteger.prototype.fromNumber = bnpFromNumber; | |
BigInteger.prototype.bitwiseTo = bnpBitwiseTo; | |
BigInteger.prototype.changeBit = bnpChangeBit; | |
BigInteger.prototype.addTo = bnpAddTo; | |
BigInteger.prototype.dMultiply = bnpDMultiply; | |
BigInteger.prototype.dAddOffset = bnpDAddOffset; | |
BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo; | |
BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo; | |
BigInteger.prototype.modInt = bnpModInt; | |
BigInteger.prototype.millerRabin = bnpMillerRabin; | |
//public | |
BigInteger.prototype.clone = bnClone; | |
BigInteger.prototype.intValue = bnIntValue; | |
BigInteger.prototype.byteValue = bnByteValue; | |
BigInteger.prototype.shortValue = bnShortValue; | |
BigInteger.prototype.signum = bnSigNum; | |
BigInteger.prototype.toByteArray = bnToByteArray; | |
BigInteger.prototype.equals = bnEquals; | |
BigInteger.prototype.min = bnMin; | |
BigInteger.prototype.max = bnMax; | |
BigInteger.prototype.and = bnAnd; | |
BigInteger.prototype.or = bnOr; | |
BigInteger.prototype.xor = bnXor; | |
BigInteger.prototype.andNot = bnAndNot; | |
BigInteger.prototype.not = bnNot; | |
BigInteger.prototype.shiftLeft = bnShiftLeft; | |
BigInteger.prototype.shiftRight = bnShiftRight; | |
BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit; | |
BigInteger.prototype.bitCount = bnBitCount; | |
BigInteger.prototype.testBit = bnTestBit; | |
BigInteger.prototype.setBit = bnSetBit; | |
BigInteger.prototype.clearBit = bnClearBit; | |
BigInteger.prototype.flipBit = bnFlipBit; | |
BigInteger.prototype.add = bnAdd; | |
BigInteger.prototype.subtract = bnSubtract; | |
BigInteger.prototype.multiply = bnMultiply; | |
BigInteger.prototype.divide = bnDivide; | |
BigInteger.prototype.remainder = bnRemainder; | |
BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder; | |
BigInteger.prototype.modPow = bnModPow; | |
BigInteger.prototype.modInverse = bnModInverse; | |
BigInteger.prototype.pow = bnPow; | |
BigInteger.prototype.gcd = bnGCD; | |
BigInteger.prototype.isProbablePrime = bnIsProbablePrime; | |
//BigInteger interfaces not implemented in jsbn: | |
//BigInteger(int signum, byte[] magnitude) | |
//double doubleValue() | |
//float floatValue() | |
//int hashCode() | |
//long longValue() | |
//static BigInteger valueOf(long val) | |