"use strict"; /** * @author jdiaz5513 */ Object.defineProperty(exports, "__esModule", { value: true }); exports.checkPointerBounds = exports.checkDataBounds = exports.testWhich = exports.setVoid = exports.setUint8 = exports.setUint64 = exports.setUint32 = exports.setUint16 = exports.setText = exports.setPointer = exports.setInt8 = exports.setInt64 = exports.setInt32 = exports.setInt16 = exports.setFloat64 = exports.setFloat32 = exports.setBit = exports.initList = exports.initData = exports.getVoid = exports.getUint8 = exports.getUint64 = exports.getUint32 = exports.getUint16 = exports.getText = exports.getStruct = exports.getSize = exports.getPointerSection = exports.getPointerAs = exports.getPointer = exports.getList = exports.getInt8 = exports.getInt64 = exports.getInt32 = exports.getInt16 = exports.getFloat64 = exports.getFloat32 = exports.getDataSection = exports.getData = exports.getBit = exports.getAs = exports.disown = exports.adopt = exports.resize = exports.initStructAt = exports.initStruct = exports.Struct = void 0; const tslib_1 = require("tslib"); const debug_1 = tslib_1.__importDefault(require("debug")); const constants_1 = require("../../constants"); const index_1 = require("../../types/index"); const util_1 = require("../../util"); const list_element_size_1 = require("../list-element-size"); const object_size_1 = require("../object-size"); const data_1 = require("./data"); const list_1 = require("./list"); const pointer_1 = require("./pointer"); const pointer_type_1 = require("./pointer-type"); const text_1 = require("./text"); const errors_1 = require("../../errors"); const trace = debug_1.default("capnp:struct"); trace("load"); // Used to apply bit masks (default values). const TMP_WORD = new DataView(new ArrayBuffer(8)); class Struct extends pointer_1.Pointer { /** * Create a new pointer to a struct. * * @constructor {Struct} * @param {Segment} segment The segment the pointer resides in. * @param {number} byteOffset The offset from the beginning of the segment to the beginning of the pointer data. * @param {any} [depthLimit=MAX_DEPTH] The nesting depth limit for this object. * @param {number} [compositeIndex] If set, then this pointer is actually a reference to a composite list * (`this._getPointerTargetType() === PointerType.LIST`), and this number is used as the index of the struct within * the list. It is not valid to call `initStruct()` on a composite struct – the struct contents are initialized when * the list pointer is initialized. */ constructor(segment, byteOffset, depthLimit = constants_1.MAX_DEPTH, compositeIndex) { super(segment, byteOffset, depthLimit); this._capnp.compositeIndex = compositeIndex; this._capnp.compositeList = compositeIndex !== undefined; } static toString() { return this._capnp.displayName; } toString() { return (`Struct_${super.toString()}` + `${this._capnp.compositeIndex === undefined ? "" : `,ci:${this._capnp.compositeIndex}`}`); } } exports.Struct = Struct; Struct._capnp = { displayName: "Struct", }; Struct.getAs = getAs; Struct.getBit = getBit; Struct.getData = getData; Struct.getFloat32 = getFloat32; Struct.getFloat64 = getFloat64; Struct.getUint8 = getUint8; Struct.getUint16 = getUint16; Struct.getUint32 = getUint32; Struct.getUint64 = getUint64; Struct.getInt8 = getInt8; Struct.getInt16 = getInt16; Struct.getInt32 = getInt32; Struct.getInt64 = getInt64; Struct.getList = getList; Struct.getPointer = getPointer; Struct.getPointerAs = getPointerAs; Struct.getStruct = getStruct; Struct.getText = getText; Struct.initData = initData; Struct.initList = initList; Struct.initStruct = initStruct; Struct.initStructAt = initStructAt; Struct.setBit = setBit; Struct.setFloat32 = setFloat32; Struct.setFloat64 = setFloat64; Struct.setUint8 = setUint8; Struct.setUint16 = setUint16; Struct.setUint32 = setUint32; Struct.setUint64 = setUint64; Struct.setInt8 = setInt8; Struct.setInt16 = setInt16; Struct.setInt32 = setInt32; Struct.setInt64 = setInt64; Struct.setText = setText; Struct.testWhich = testWhich; /** * Initialize a struct with the provided object size. This will allocate new space for the struct contents, ideally in * the same segment as this pointer. * * @param {ObjectSize} size An object describing the size of the struct's data and pointer sections. * @param {Struct} s The struct to initialize. * @returns {void} */ function initStruct(size, s) { if (s._capnp.compositeIndex !== undefined) { throw new Error(util_1.format(errors_1.PTR_INIT_COMPOSITE_STRUCT, s)); } // Make sure to clear existing contents before overwriting the pointer data (erase is a noop if already empty). pointer_1.erase(s); const c = s.segment.allocate(object_size_1.getByteLength(size)); const res = pointer_1.initPointer(c.segment, c.byteOffset, s); pointer_1.setStructPointer(res.offsetWords, size, res.pointer); } exports.initStruct = initStruct; function initStructAt(index, StructClass, p) { const s = getPointerAs(index, StructClass, p); initStruct(StructClass._capnp.size, s); return s; } exports.initStructAt = initStructAt; /** * Make a shallow copy of a struct's contents and update the pointer to point to the new content. The data and pointer * sections will be resized to the provided size. * * WARNING: This method can cause data loss if `dstSize` is smaller than the original size! * * @param {ObjectSize} dstSize The desired size for the struct contents. * @param {Struct} s The struct to resize. * @returns {void} */ function resize(dstSize, s) { const srcSize = getSize(s); const srcContent = pointer_1.getContent(s); const dstContent = s.segment.allocate(object_size_1.getByteLength(dstSize)); // Only copy the data section for now. The pointer section will need to be rewritten. dstContent.segment.copyWords(dstContent.byteOffset, srcContent.segment, srcContent.byteOffset, Math.min(object_size_1.getDataWordLength(srcSize), object_size_1.getDataWordLength(dstSize))); const res = pointer_1.initPointer(dstContent.segment, dstContent.byteOffset, s); pointer_1.setStructPointer(res.offsetWords, dstSize, res.pointer); // Iterate through the new pointer section and update the offsets so they point to the right place. This is a bit // more complicated than it appears due to the fact that the original pointers could have been far pointers, and // the new pointers might need to be allocated as far pointers if the segment is full. for (let i = 0; i < Math.min(srcSize.pointerLength, dstSize.pointerLength); i++) { const srcPtr = new pointer_1.Pointer(srcContent.segment, srcContent.byteOffset + srcSize.dataByteLength + i * 8); if (pointer_1.isNull(srcPtr)) { // If source pointer is null, leave the destination pointer as default null. continue; } const srcPtrTarget = pointer_1.followFars(srcPtr); const srcPtrContent = pointer_1.getContent(srcPtr); const dstPtr = new pointer_1.Pointer(dstContent.segment, dstContent.byteOffset + dstSize.dataByteLength + i * 8); // For composite lists the offset needs to point to the tag word, not the first element which is what getContent // returns. if (pointer_1.getTargetPointerType(srcPtr) === pointer_type_1.PointerType.LIST && pointer_1.getTargetListElementSize(srcPtr) === list_element_size_1.ListElementSize.COMPOSITE) { srcPtrContent.byteOffset -= 8; } const r = pointer_1.initPointer(srcPtrContent.segment, srcPtrContent.byteOffset, dstPtr); // Read the old pointer data, but discard the original offset. const a = srcPtrTarget.segment.getUint8(srcPtrTarget.byteOffset) & 0x03; const b = srcPtrTarget.segment.getUint32(srcPtrTarget.byteOffset + 4); r.pointer.segment.setUint32(r.pointer.byteOffset, a | (r.offsetWords << 2)); r.pointer.segment.setUint32(r.pointer.byteOffset + 4, b); } // Zero out the old data and pointer sections. srcContent.segment.fillZeroWords(srcContent.byteOffset, object_size_1.getWordLength(srcSize)); } exports.resize = resize; function adopt(src, s) { if (s._capnp.compositeIndex !== undefined) { throw new Error(util_1.format(errors_1.PTR_ADOPT_COMPOSITE_STRUCT, s)); } pointer_1.Pointer.adopt(src, s); } exports.adopt = adopt; function disown(s) { if (s._capnp.compositeIndex !== undefined) { throw new Error(util_1.format(errors_1.PTR_DISOWN_COMPOSITE_STRUCT, s)); } return pointer_1.Pointer.disown(s); } exports.disown = disown; /** * Convert a struct to a struct of the provided class. Particularly useful when casting to nested group types. * * @protected * @template T * @param {StructCtor} StructClass The struct class to convert to. Not particularly useful if `Struct`. * @param {Struct} s The struct to convert. * @returns {T} A new instance of the desired struct class pointing to the same location. */ function getAs(StructClass, s) { return new StructClass(s.segment, s.byteOffset, s._capnp.depthLimit, s._capnp.compositeIndex); } exports.getAs = getAs; /** * Read a boolean (bit) value out of a struct. * * @protected * @param {number} bitOffset The offset in **bits** from the start of the data section. * @param {Struct} s The struct to read from. * @param {DataView} [defaultMask] The default value as a DataView. * @returns {boolean} The value. */ function getBit(bitOffset, s, defaultMask) { const byteOffset = Math.floor(bitOffset / 8); const bitMask = 1 << bitOffset % 8; checkDataBounds(byteOffset, 1, s); const ds = getDataSection(s); const v = ds.segment.getUint8(ds.byteOffset + byteOffset); if (defaultMask === undefined) return (v & bitMask) !== 0; const defaultValue = defaultMask.getUint8(0); return ((v ^ defaultValue) & bitMask) !== 0; } exports.getBit = getBit; function getData(index, s, defaultValue) { checkPointerBounds(index, s); const ps = getPointerSection(s); ps.byteOffset += index * 8; const l = new data_1.Data(ps.segment, ps.byteOffset, s._capnp.depthLimit - 1); if (pointer_1.isNull(l)) { if (defaultValue) { pointer_1.Pointer.copyFrom(defaultValue, l); } else { list_1.List.initList(list_element_size_1.ListElementSize.BYTE, 0, l); } } return l; } exports.getData = getData; function getDataSection(s) { return pointer_1.getContent(s); } exports.getDataSection = getDataSection; /** * Read a float32 value out of a struct. * * @param {number} byteOffset The offset in bytes from the start of the data section. * @param {Struct} s The struct to read from. * @param {DataView} [defaultMask] The default value as a DataView. * @returns {number} The value. */ function getFloat32(byteOffset, s, defaultMask) { checkDataBounds(byteOffset, 4, s); const ds = getDataSection(s); if (defaultMask === undefined) { return ds.segment.getFloat32(ds.byteOffset + byteOffset); } const v = ds.segment.getUint32(ds.byteOffset + byteOffset) ^ defaultMask.getUint32(0, true); TMP_WORD.setUint32(0, v, constants_1.NATIVE_LITTLE_ENDIAN); return TMP_WORD.getFloat32(0, constants_1.NATIVE_LITTLE_ENDIAN); } exports.getFloat32 = getFloat32; /** * Read a float64 value out of this segment. * * @param {number} byteOffset The offset in bytes from the start of the data section. * @param {Struct} s The struct to read from. * @param {DataView} [defaultMask] The default value as a DataView. * @returns {number} The value. */ function getFloat64(byteOffset, s, defaultMask) { checkDataBounds(byteOffset, 8, s); const ds = getDataSection(s); if (defaultMask !== undefined) { const lo = ds.segment.getUint32(ds.byteOffset + byteOffset) ^ defaultMask.getUint32(0, true); const hi = ds.segment.getUint32(ds.byteOffset + byteOffset + 4) ^ defaultMask.getUint32(4, true); TMP_WORD.setUint32(0, lo, constants_1.NATIVE_LITTLE_ENDIAN); TMP_WORD.setUint32(4, hi, constants_1.NATIVE_LITTLE_ENDIAN); return TMP_WORD.getFloat64(0, constants_1.NATIVE_LITTLE_ENDIAN); } return ds.segment.getFloat64(ds.byteOffset + byteOffset); } exports.getFloat64 = getFloat64; /** * Read an int16 value out of this segment. * * @param {number} byteOffset The offset in bytes from the start of the data section. * @param {Struct} s The struct to read from. * @param {DataView} [defaultMask] The default value as a DataView. * @returns {number} The value. */ function getInt16(byteOffset, s, defaultMask) { checkDataBounds(byteOffset, 2, s); const ds = getDataSection(s); if (defaultMask === undefined) { return ds.segment.getInt16(ds.byteOffset + byteOffset); } const v = ds.segment.getUint16(ds.byteOffset + byteOffset) ^ defaultMask.getUint16(0, true); TMP_WORD.setUint16(0, v, constants_1.NATIVE_LITTLE_ENDIAN); return TMP_WORD.getInt16(0, constants_1.NATIVE_LITTLE_ENDIAN); } exports.getInt16 = getInt16; /** * Read an int32 value out of this segment. * * @param {number} byteOffset The offset in bytes from the start of the data section. * @param {Struct} s The struct to read from. * @param {DataView} [defaultMask] The default value as a DataView. * @returns {number} The value. */ function getInt32(byteOffset, s, defaultMask) { checkDataBounds(byteOffset, 4, s); const ds = getDataSection(s); if (defaultMask === undefined) { return ds.segment.getInt32(ds.byteOffset + byteOffset); } const v = ds.segment.getUint32(ds.byteOffset + byteOffset) ^ defaultMask.getUint16(0, true); TMP_WORD.setUint32(0, v, constants_1.NATIVE_LITTLE_ENDIAN); return TMP_WORD.getInt32(0, constants_1.NATIVE_LITTLE_ENDIAN); } exports.getInt32 = getInt32; /** * Read an int64 value out of this segment. * * @param {number} byteOffset The offset in bytes from the start of the data section. * @param {Struct} s The struct to read from. * @param {DataView} [defaultMask] The default value as a DataView. * @returns {number} The value. */ function getInt64(byteOffset, s, defaultMask) { checkDataBounds(byteOffset, 8, s); const ds = getDataSection(s); if (defaultMask === undefined) { return ds.segment.getInt64(ds.byteOffset + byteOffset); } const lo = ds.segment.getUint32(ds.byteOffset + byteOffset) ^ defaultMask.getUint32(0, true); const hi = ds.segment.getUint32(ds.byteOffset + byteOffset + 4) ^ defaultMask.getUint32(4, true); TMP_WORD.setUint32(0, lo, constants_1.NATIVE_LITTLE_ENDIAN); TMP_WORD.setUint32(4, hi, constants_1.NATIVE_LITTLE_ENDIAN); return new index_1.Int64(new Uint8Array(TMP_WORD.buffer.slice(0))); } exports.getInt64 = getInt64; /** * Read an int8 value out of this segment. * * @param {number} byteOffset The offset in bytes from the start of the data section. * @param {Struct} s The struct to read from. * @param {DataView} [defaultMask] The default value as a DataView. * @returns {number} The value. */ function getInt8(byteOffset, s, defaultMask) { checkDataBounds(byteOffset, 1, s); const ds = getDataSection(s); if (defaultMask === undefined) { return ds.segment.getInt8(ds.byteOffset + byteOffset); } const v = ds.segment.getUint8(ds.byteOffset + byteOffset) ^ defaultMask.getUint8(0); TMP_WORD.setUint8(0, v); return TMP_WORD.getInt8(0); } exports.getInt8 = getInt8; function getList(index, ListClass, s, defaultValue) { checkPointerBounds(index, s); const ps = getPointerSection(s); ps.byteOffset += index * 8; const l = new ListClass(ps.segment, ps.byteOffset, s._capnp.depthLimit - 1); if (pointer_1.isNull(l)) { if (defaultValue) { pointer_1.Pointer.copyFrom(defaultValue, l); } else { list_1.List.initList(ListClass._capnp.size, 0, l, ListClass._capnp.compositeSize); } } else if (ListClass._capnp.compositeSize !== undefined) { // If this is a composite list we need to be sure the composite elements are big enough to hold everything as // specified in the schema. If the new schema has added fields we'll need to "resize" (shallow-copy) the list so // it has room for the new fields. const srcSize = pointer_1.getTargetCompositeListSize(l); const dstSize = ListClass._capnp.compositeSize; if (dstSize.dataByteLength > srcSize.dataByteLength || dstSize.pointerLength > srcSize.pointerLength) { const srcContent = pointer_1.getContent(l); const srcLength = pointer_1.getTargetListLength(l); trace("resizing composite list %s due to protocol upgrade, new size: %d", l, object_size_1.getByteLength(dstSize) * srcLength); // Allocate an extra 8 bytes for the tag. const dstContent = l.segment.allocate(object_size_1.getByteLength(dstSize) * srcLength + 8); const res = pointer_1.initPointer(dstContent.segment, dstContent.byteOffset, l); pointer_1.setListPointer(res.offsetWords, ListClass._capnp.size, srcLength, res.pointer, dstSize); // Write the new tag word. pointer_1.setStructPointer(srcLength, dstSize, dstContent); // Seek ahead past the tag word before copying the content. dstContent.byteOffset += 8; for (let i = 0; i < srcLength; i++) { const srcElementOffset = srcContent.byteOffset + i * object_size_1.getByteLength(srcSize); const dstElementOffset = dstContent.byteOffset + i * object_size_1.getByteLength(dstSize); // Copy the data section. dstContent.segment.copyWords(dstElementOffset, srcContent.segment, srcElementOffset, object_size_1.getWordLength(srcSize)); // Iterate through the pointers and update the offsets so they point to the right place. for (let j = 0; j < srcSize.pointerLength; j++) { const srcPtr = new pointer_1.Pointer(srcContent.segment, srcElementOffset + srcSize.dataByteLength + j * 8); const dstPtr = new pointer_1.Pointer(dstContent.segment, dstElementOffset + dstSize.dataByteLength + j * 8); const srcPtrTarget = pointer_1.followFars(srcPtr); const srcPtrContent = pointer_1.getContent(srcPtr); if (pointer_1.getTargetPointerType(srcPtr) === pointer_type_1.PointerType.LIST && pointer_1.getTargetListElementSize(srcPtr) === list_element_size_1.ListElementSize.COMPOSITE) { srcPtrContent.byteOffset -= 8; } const r = pointer_1.initPointer(srcPtrContent.segment, srcPtrContent.byteOffset, dstPtr); // Read the old pointer data, but discard the original offset. const a = srcPtrTarget.segment.getUint8(srcPtrTarget.byteOffset) & 0x03; const b = srcPtrTarget.segment.getUint32(srcPtrTarget.byteOffset + 4); r.pointer.segment.setUint32(r.pointer.byteOffset, a | (r.offsetWords << 2)); r.pointer.segment.setUint32(r.pointer.byteOffset + 4, b); } } // Zero out the old content. srcContent.segment.fillZeroWords(srcContent.byteOffset, object_size_1.getWordLength(srcSize) * srcLength); } } return l; } exports.getList = getList; function getPointer(index, s) { checkPointerBounds(index, s); const ps = getPointerSection(s); ps.byteOffset += index * 8; return new pointer_1.Pointer(ps.segment, ps.byteOffset, s._capnp.depthLimit - 1); } exports.getPointer = getPointer; function getPointerAs(index, PointerClass, s) { checkPointerBounds(index, s); const ps = getPointerSection(s); ps.byteOffset += index * 8; return new PointerClass(ps.segment, ps.byteOffset, s._capnp.depthLimit - 1); } exports.getPointerAs = getPointerAs; function getPointerSection(s) { const ps = pointer_1.getContent(s); ps.byteOffset += util_1.padToWord(getSize(s).dataByteLength); return ps; } exports.getPointerSection = getPointerSection; function getSize(s) { if (s._capnp.compositeIndex !== undefined) { // For composite lists the object size is stored in a tag word right before the content. const c = pointer_1.getContent(s, true); c.byteOffset -= 8; return pointer_1.getStructSize(c); } return pointer_1.getTargetStructSize(s); } exports.getSize = getSize; function getStruct(index, StructClass, s, defaultValue) { const t = getPointerAs(index, StructClass, s); if (pointer_1.isNull(t)) { if (defaultValue) { pointer_1.Pointer.copyFrom(defaultValue, t); } else { initStruct(StructClass._capnp.size, t); } } else { pointer_1.validate(pointer_type_1.PointerType.STRUCT, t); const ts = pointer_1.getTargetStructSize(t); // This can happen when reading a struct that was constructed with an older version of the same schema, and new // fields were added to the struct. A shallow copy of the struct will be made so that there's enough room for the // data and pointer sections. This will unfortunately leave a "hole" of zeroes in the message, but that hole will // at least compress well. if (ts.dataByteLength < StructClass._capnp.size.dataByteLength || ts.pointerLength < StructClass._capnp.size.pointerLength) { trace("need to resize child struct %s", t); resize(StructClass._capnp.size, t); } } return t; } exports.getStruct = getStruct; function getText(index, s, defaultValue) { const t = text_1.Text.fromPointer(getPointer(index, s)); // FIXME: This will perform an unnecessary string<>ArrayBuffer roundtrip. if (pointer_1.isNull(t) && defaultValue) t.set(0, defaultValue); return t.get(0); } exports.getText = getText; /** * Read an uint16 value out of a struct.. * * @param {number} byteOffset The offset in bytes from the start of the data section. * @param {Struct} s The struct to read from. * @param {DataView} [defaultMask] The default value as a DataView. * @returns {number} The value. */ function getUint16(byteOffset, s, defaultMask) { checkDataBounds(byteOffset, 2, s); const ds = getDataSection(s); if (defaultMask === undefined) { return ds.segment.getUint16(ds.byteOffset + byteOffset); } return ds.segment.getUint16(ds.byteOffset + byteOffset) ^ defaultMask.getUint16(0, true); } exports.getUint16 = getUint16; /** * Read an uint32 value out of a struct. * * @param {number} byteOffset The offset in bytes from the start of the data section. * @param {Struct} s The struct to read from. * @param {DataView} [defaultMask] The default value as a DataView. * @returns {number} The value. */ function getUint32(byteOffset, s, defaultMask) { checkDataBounds(byteOffset, 4, s); const ds = getDataSection(s); if (defaultMask === undefined) { return ds.segment.getUint32(ds.byteOffset + byteOffset); } return ds.segment.getUint32(ds.byteOffset + byteOffset) ^ defaultMask.getUint32(0, true); } exports.getUint32 = getUint32; /** * Read an uint64 value out of a struct. * * @param {number} byteOffset The offset in bytes from the start of the data section. * @param {Struct} s The struct to read from. * @param {DataView} [defaultMask] The default value as a DataView. * @returns {number} The value. */ function getUint64(byteOffset, s, defaultMask) { checkDataBounds(byteOffset, 8, s); const ds = getDataSection(s); if (defaultMask === undefined) { return ds.segment.getUint64(ds.byteOffset + byteOffset); } const lo = ds.segment.getUint32(ds.byteOffset + byteOffset) ^ defaultMask.getUint32(0, true); const hi = ds.segment.getUint32(ds.byteOffset + byteOffset + 4) ^ defaultMask.getUint32(4, true); TMP_WORD.setUint32(0, lo, constants_1.NATIVE_LITTLE_ENDIAN); TMP_WORD.setUint32(4, hi, constants_1.NATIVE_LITTLE_ENDIAN); return new index_1.Uint64(new Uint8Array(TMP_WORD.buffer.slice(0))); } exports.getUint64 = getUint64; /** * Read an uint8 value out of a struct. * * @param {number} byteOffset The offset in bytes from the start of the data section. * @param {Struct} s The struct to read from. * @param {DataView} [defaultMask] The default value as a DataView. * @returns {number} The value. */ function getUint8(byteOffset, s, defaultMask) { checkDataBounds(byteOffset, 1, s); const ds = getDataSection(s); if (defaultMask === undefined) { return ds.segment.getUint8(ds.byteOffset + byteOffset); } return ds.segment.getUint8(ds.byteOffset + byteOffset) ^ defaultMask.getUint8(0); } exports.getUint8 = getUint8; function getVoid() { throw new Error(errors_1.INVARIANT_UNREACHABLE_CODE); } exports.getVoid = getVoid; function initData(index, length, s) { checkPointerBounds(index, s); const ps = getPointerSection(s); ps.byteOffset += index * 8; const l = new data_1.Data(ps.segment, ps.byteOffset, s._capnp.depthLimit - 1); pointer_1.erase(l); list_1.List.initList(list_element_size_1.ListElementSize.BYTE, length, l); return l; } exports.initData = initData; function initList(index, ListClass, length, s) { checkPointerBounds(index, s); const ps = getPointerSection(s); ps.byteOffset += index * 8; const l = new ListClass(ps.segment, ps.byteOffset, s._capnp.depthLimit - 1); pointer_1.erase(l); list_1.List.initList(ListClass._capnp.size, length, l, ListClass._capnp.compositeSize); return l; } exports.initList = initList; /** * Write a boolean (bit) value to the struct. * * @protected * @param {number} bitOffset The offset in **bits** from the start of the data section. * @param {boolean} value The value to write (writes a 0 for `false`, 1 for `true`). * @param {Struct} s The struct to write to. * @param {DataView} [defaultMask] The default value as a DataView. * @returns {void} */ function setBit(bitOffset, value, s, defaultMask) { const byteOffset = Math.floor(bitOffset / 8); const bitMask = 1 << bitOffset % 8; checkDataBounds(byteOffset, 1, s); const ds = getDataSection(s); const b = ds.segment.getUint8(ds.byteOffset + byteOffset); // If the default mask bit is set, that means `true` values are actually written as `0`. if (defaultMask !== undefined) { value = (defaultMask.getUint8(0) & bitMask) !== 0 ? !value : value; } ds.segment.setUint8(ds.byteOffset + byteOffset, value ? b | bitMask : b & ~bitMask); } exports.setBit = setBit; /** * Write a primitive float32 value to the struct. * * @protected * @param {number} byteOffset The offset in bytes from the start of the data section. * @param {number} value The value to write. * @param {Struct} s The struct to write to. * @param {DataView} [defaultMask] The default value as a DataView. * @returns {void} */ function setFloat32(byteOffset, value, s, defaultMask) { checkDataBounds(byteOffset, 4, s); const ds = getDataSection(s); if (defaultMask !== undefined) { TMP_WORD.setFloat32(0, value, constants_1.NATIVE_LITTLE_ENDIAN); const v = TMP_WORD.getUint32(0, constants_1.NATIVE_LITTLE_ENDIAN) ^ defaultMask.getUint32(0, true); ds.segment.setUint32(ds.byteOffset + byteOffset, v); return; } ds.segment.setFloat32(ds.byteOffset + byteOffset, value); } exports.setFloat32 = setFloat32; /** * Write a primitive float64 value to the struct. * * @protected * @param {number} byteOffset The offset in bytes from the start of the data section. * @param {number} value The value to write. * @param {Struct} s The struct to write to. * @param {DataView} [defaultMask] The default value as a DataView. * @returns {void} */ function setFloat64(byteOffset, value, s, defaultMask) { checkDataBounds(byteOffset, 8, s); const ds = getDataSection(s); if (defaultMask !== undefined) { TMP_WORD.setFloat64(0, value, constants_1.NATIVE_LITTLE_ENDIAN); const lo = TMP_WORD.getUint32(0, constants_1.NATIVE_LITTLE_ENDIAN) ^ defaultMask.getUint32(0, true); const hi = TMP_WORD.getUint32(4, constants_1.NATIVE_LITTLE_ENDIAN) ^ defaultMask.getUint32(4, true); ds.segment.setUint32(ds.byteOffset + byteOffset, lo); ds.segment.setUint32(ds.byteOffset + byteOffset + 4, hi); return; } ds.segment.setFloat64(ds.byteOffset + byteOffset, value); } exports.setFloat64 = setFloat64; /** * Write a primitive int16 value to the struct. * * @protected * @param {number} byteOffset The offset in bytes from the start of the data section. * @param {number} value The value to write. * @param {Struct} s The struct to write to. * @param {DataView} [defaultMask] The default value as a DataView. * @returns {void} */ function setInt16(byteOffset, value, s, defaultMask) { checkDataBounds(byteOffset, 2, s); const ds = getDataSection(s); if (defaultMask !== undefined) { TMP_WORD.setInt16(0, value, constants_1.NATIVE_LITTLE_ENDIAN); const v = TMP_WORD.getUint16(0, constants_1.NATIVE_LITTLE_ENDIAN) ^ defaultMask.getUint16(0, true); ds.segment.setUint16(ds.byteOffset + byteOffset, v); return; } ds.segment.setInt16(ds.byteOffset + byteOffset, value); } exports.setInt16 = setInt16; /** * Write a primitive int32 value to the struct. * * @protected * @param {number} byteOffset The offset in bytes from the start of the data section. * @param {number} value The value to write. * @param {Struct} s The struct to write to. * @param {DataView} [defaultMask] The default value as a DataView. * @returns {void} */ function setInt32(byteOffset, value, s, defaultMask) { checkDataBounds(byteOffset, 4, s); const ds = getDataSection(s); if (defaultMask !== undefined) { TMP_WORD.setInt32(0, value, constants_1.NATIVE_LITTLE_ENDIAN); const v = TMP_WORD.getUint32(0, constants_1.NATIVE_LITTLE_ENDIAN) ^ defaultMask.getUint32(0, true); ds.segment.setUint32(ds.byteOffset + byteOffset, v); return; } ds.segment.setInt32(ds.byteOffset + byteOffset, value); } exports.setInt32 = setInt32; /** * Write a primitive int64 value to the struct. * * @protected * @param {number} byteOffset The offset in bytes from the start of the data section. * @param {number} value The value to write. * @param {Struct} s The struct to write to. * @param {DataView} [defaultMask] The default value as a DataView. * @returns {void} */ function setInt64(byteOffset, value, s, defaultMask) { checkDataBounds(byteOffset, 8, s); const ds = getDataSection(s); if (defaultMask !== undefined) { // PERF: We could cast the Int64 to a DataView to apply the mask using four 32-bit reads, but we already have a // typed array so avoiding the object allocation turns out to be slightly faster. Int64 is guaranteed to be in // little-endian format by design. for (let i = 0; i < 8; i++) { ds.segment.setUint8(ds.byteOffset + byteOffset + i, value.buffer[i] ^ defaultMask.getUint8(i)); } return; } ds.segment.setInt64(ds.byteOffset + byteOffset, value); } exports.setInt64 = setInt64; /** * Write a primitive int8 value to the struct. * * @protected * @param {number} byteOffset The offset in bytes from the start of the data section. * @param {number} value The value to write. * @param {Struct} s The struct to write to. * @param {DataView} [defaultMask] The default value as a DataView. * @returns {void} */ function setInt8(byteOffset, value, s, defaultMask) { checkDataBounds(byteOffset, 1, s); const ds = getDataSection(s); if (defaultMask !== undefined) { TMP_WORD.setInt8(0, value); const v = TMP_WORD.getUint8(0) ^ defaultMask.getUint8(0); ds.segment.setUint8(ds.byteOffset + byteOffset, v); return; } ds.segment.setInt8(ds.byteOffset + byteOffset, value); } exports.setInt8 = setInt8; function setPointer(index, value, s) { pointer_1.copyFrom(value, getPointer(index, s)); } exports.setPointer = setPointer; function setText(index, value, s) { text_1.Text.fromPointer(getPointer(index, s)).set(0, value); } exports.setText = setText; /** * Write a primitive uint16 value to the struct. * * @protected * @param {number} byteOffset The offset in bytes from the start of the data section. * @param {number} value The value to write. * @param {Struct} s The struct to write to. * @param {DataView} [defaultMask] The default value as a DataView. * @returns {void} */ function setUint16(byteOffset, value, s, defaultMask) { checkDataBounds(byteOffset, 2, s); const ds = getDataSection(s); if (defaultMask !== undefined) value ^= defaultMask.getUint16(0, true); ds.segment.setUint16(ds.byteOffset + byteOffset, value); } exports.setUint16 = setUint16; /** * Write a primitive uint32 value to the struct. * * @protected * @param {number} byteOffset The offset in bytes from the start of the data section. * @param {number} value The value to write. * @param {Struct} s The struct to write to. * @param {DataView} [defaultMask] The default value as a DataView. * @returns {void} */ function setUint32(byteOffset, value, s, defaultMask) { checkDataBounds(byteOffset, 4, s); const ds = getDataSection(s); if (defaultMask !== undefined) value ^= defaultMask.getUint32(0, true); ds.segment.setUint32(ds.byteOffset + byteOffset, value); } exports.setUint32 = setUint32; /** * Write a primitive uint64 value to the struct. * * @protected * @param {number} byteOffset The offset in bytes from the start of the data section. * @param {number} value The value to write. * @param {Struct} s The struct to write to. * @param {DataView} [defaultMask] The default value as a DataView. * @returns {void} */ function setUint64(byteOffset, value, s, defaultMask) { checkDataBounds(byteOffset, 8, s); const ds = getDataSection(s); if (defaultMask !== undefined) { // PERF: We could cast the Uint64 to a DataView to apply the mask using four 32-bit reads, but we already have a // typed array so avoiding the object allocation turns out to be slightly faster. Uint64 is guaranteed to be in // little-endian format by design. for (let i = 0; i < 8; i++) { ds.segment.setUint8(ds.byteOffset + byteOffset + i, value.buffer[i] ^ defaultMask.getUint8(i)); } return; } ds.segment.setUint64(ds.byteOffset + byteOffset, value); } exports.setUint64 = setUint64; /** * Write a primitive uint8 value to the struct. * * @protected * @param {number} byteOffset The offset in bytes from the start of the data section. * @param {number} value The value to write. * @param {Struct} s The struct to write to. * @param {DataView} [defaultMask] The default value as a DataView. * @returns {void} */ function setUint8(byteOffset, value, s, defaultMask) { checkDataBounds(byteOffset, 1, s); const ds = getDataSection(s); if (defaultMask !== undefined) value ^= defaultMask.getUint8(0); ds.segment.setUint8(ds.byteOffset + byteOffset, value); } exports.setUint8 = setUint8; function setVoid() { throw new Error(errors_1.INVARIANT_UNREACHABLE_CODE); } exports.setVoid = setVoid; function testWhich(name, found, wanted, s) { if (found !== wanted) { throw new Error(util_1.format(errors_1.PTR_INVALID_UNION_ACCESS, s, name, found, wanted)); } } exports.testWhich = testWhich; function checkDataBounds(byteOffset, byteLength, s) { const dataByteLength = getSize(s).dataByteLength; if (byteOffset < 0 || byteLength < 0 || byteOffset + byteLength > dataByteLength) { throw new Error(util_1.format(errors_1.PTR_STRUCT_DATA_OUT_OF_BOUNDS, s, byteLength, byteOffset, dataByteLength)); } } exports.checkDataBounds = checkDataBounds; function checkPointerBounds(index, s) { const pointerLength = getSize(s).pointerLength; if (index < 0 || index >= pointerLength) { throw new Error(util_1.format(errors_1.PTR_STRUCT_POINTER_OUT_OF_BOUNDS, s, index, pointerLength)); } } exports.checkPointerBounds = checkPointerBounds; //# sourceMappingURL=struct.js.map