Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
from Bio import SeqIO
|
4 |
+
from Bio.Seq import Seq
|
5 |
+
from hmmlearn import hmm
|
6 |
+
|
7 |
+
# Function to encode DNA sequence
|
8 |
+
def encode_sequence(seq):
|
9 |
+
encoding = {'A': 0, 'C': 1, 'G': 2, 'T': 3}
|
10 |
+
return np.array([encoding[base] for base in seq if base in encoding])
|
11 |
+
|
12 |
+
# Simple HMM model (this is a placeholder and would need proper training)
|
13 |
+
model = hmm.MultinomialHMM(n_components=2, random_state=42)
|
14 |
+
model.startprob_ = np.array([0.5, 0.5])
|
15 |
+
model.transmat_ = np.array([[0.7, 0.3],
|
16 |
+
[0.3, 0.7]])
|
17 |
+
model.emissionprob_ = np.array([[0.25, 0.25, 0.25, 0.25],
|
18 |
+
[0.20, 0.30, 0.30, 0.20]])
|
19 |
+
|
20 |
+
def analyze_dark_matter(sequence):
|
21 |
+
seq = Seq(sequence)
|
22 |
+
|
23 |
+
# Basic statistics
|
24 |
+
length = len(seq)
|
25 |
+
gc_content = SeqIO.GC(seq)
|
26 |
+
|
27 |
+
# Look for common regulatory motifs
|
28 |
+
tata_box = seq.count("TATAAA")
|
29 |
+
caat_box = seq.count("CCAAT")
|
30 |
+
|
31 |
+
# HMM analysis
|
32 |
+
encoded_seq = encode_sequence(str(seq))
|
33 |
+
logprob, hidden_states = model.decode(encoded_seq.reshape(-1, 1))
|
34 |
+
|
35 |
+
regulatory_regions = []
|
36 |
+
current_start = None
|
37 |
+
for i, state in enumerate(hidden_states):
|
38 |
+
if state == 1 and current_start is None:
|
39 |
+
current_start = i
|
40 |
+
elif state == 0 and current_start is not None:
|
41 |
+
regulatory_regions.append((current_start, i))
|
42 |
+
current_start = None
|
43 |
+
|
44 |
+
if current_start is not None:
|
45 |
+
regulatory_regions.append((current_start, len(hidden_states)))
|
46 |
+
|
47 |
+
return length, gc_content, tata_box, caat_box, regulatory_regions
|
48 |
+
|
49 |
+
# Streamlit app
|
50 |
+
st.title("Genomic Dark Matter Analyzer")
|
51 |
+
|
52 |
+
sequence = st.text_area("Paste your DNA sequence here", height=150)
|
53 |
+
|
54 |
+
if st.button("Analyze"):
|
55 |
+
if sequence:
|
56 |
+
length, gc_content, tata_box, caat_box, regulatory_regions = analyze_dark_matter(sequence)
|
57 |
+
|
58 |
+
st.write(f"Sequence Length: {length}")
|
59 |
+
st.write(f"GC Content: {gc_content:.2f}%")
|
60 |
+
st.write(f"TATA Box motifs: {tata_box}")
|
61 |
+
st.write(f"CAAT Box motifs: {caat_box}")
|
62 |
+
|
63 |
+
st.subheader("Potential Regulatory Regions (based on HMM):")
|
64 |
+
for start, end in regulatory_regions:
|
65 |
+
st.write(f"Region from base {start} to {end}")
|
66 |
+
|
67 |
+
# Visualize the sequence with highlighted regions
|
68 |
+
highlighted_seq = list(sequence)
|
69 |
+
for start, end in regulatory_regions:
|
70 |
+
for i in range(start, min(end, len(highlighted_seq))):
|
71 |
+
highlighted_seq[i] = f"<span style='background-color: yellow'>{highlighted_seq[i]}</span>"
|
72 |
+
|
73 |
+
st.markdown("".join(highlighted_seq), unsafe_allow_html=True)
|
74 |
+
else:
|
75 |
+
st.write("Please enter a DNA sequence.")
|