Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
import numpy as np
|
3 |
-
from Bio.
|
4 |
from hmmlearn import hmm
|
5 |
|
6 |
# Function to encode DNA sequence
|
@@ -8,6 +8,12 @@ def encode_sequence(seq):
|
|
8 |
encoding = {'A': 0, 'C': 1, 'G': 2, 'T': 3}
|
9 |
return np.array([encoding[base] for base in seq if base in encoding])
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# Simple HMM model (this is a placeholder and would need proper training)
|
12 |
model = hmm.MultinomialHMM(n_components=2, random_state=42)
|
13 |
model.startprob_ = np.array([0.5, 0.5])
|
@@ -21,7 +27,7 @@ def analyze_dark_matter(sequence):
|
|
21 |
|
22 |
# Basic statistics
|
23 |
length = len(seq)
|
24 |
-
gc_content =
|
25 |
|
26 |
# Look for common regulatory motifs
|
27 |
tata_box = seq.count("TATAAA")
|
|
|
1 |
import streamlit as st
|
2 |
import numpy as np
|
3 |
+
from Bio.Seq import Seq
|
4 |
from hmmlearn import hmm
|
5 |
|
6 |
# Function to encode DNA sequence
|
|
|
8 |
encoding = {'A': 0, 'C': 1, 'G': 2, 'T': 3}
|
9 |
return np.array([encoding[base] for base in seq if base in encoding])
|
10 |
|
11 |
+
# Function to calculate GC content
|
12 |
+
def calculate_gc_content(seq):
|
13 |
+
gc_count = seq.count('G') + seq.count('C')
|
14 |
+
total_count = len(seq)
|
15 |
+
return (gc_count / total_count) * 100 if total_count > 0 else 0
|
16 |
+
|
17 |
# Simple HMM model (this is a placeholder and would need proper training)
|
18 |
model = hmm.MultinomialHMM(n_components=2, random_state=42)
|
19 |
model.startprob_ = np.array([0.5, 0.5])
|
|
|
27 |
|
28 |
# Basic statistics
|
29 |
length = len(seq)
|
30 |
+
gc_content = calculate_gc_content(seq)
|
31 |
|
32 |
# Look for common regulatory motifs
|
33 |
tata_box = seq.count("TATAAA")
|