Pie31415's picture
update
cedb7e1
import torch
import gradio as gr
from torchvision import transforms
from diffusers import StableDiffusionPipeline
from model import ResNet, ResidualBlock
from attack import Attack
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = StableDiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1-base"
)
pipe = pipe.to(device)
CLASSES = (
"plane",
"car",
"bird",
"cat",
"deer",
"dog",
"frog",
"horse",
"ship",
"truck",
)
def load_classifer(model_path):
# load resnet model
model = ResNet(ResidualBlock, [2, 2, 2])
model.load_state_dict(torch.load(model_path, map_location=device))
model.eval()
return model
classifer = load_classifer("./models/resnet.ckpt")
attack = Attack(pipe, classifer, device)
def classifer_pred(image):
to_pil = transforms.ToPILImage()
input = attack.transform(to_pil(image[0]))
outputs = classifer(input)
_, predicted = torch.max(outputs, 1)
return CLASSES[predicted[0]]
def run_attack(prompt, epsilon):
image, perturbed_image = attack(prompt, epsilon=epsilon)
pred = classifer_pred(perturbed_image)
return image, pred
demo = gr.Interface(
run_attack,
[gr.Text(), gr.Slider(minimum=0.0, maximum=0.3, value=float)],
[gr.Image(), gr.Text()],
title="Stable Diffused Adversarial Attacks",
)
demo.launch()