Spaces:
Runtime error
Runtime error
updated gradio app
Browse files- app.py +56 -12
- attack.py +59 -0
- model.py +78 -0
- models/resnet.ckpt +3 -0
app.py
CHANGED
@@ -1,17 +1,61 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler
|
3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
|
7 |
-
device = troch.device("cuda" if torch.cuda.is_avaliable() else "cpu")
|
8 |
|
9 |
-
pipe = StableDiffusionPipeline.from_pretrained(
|
|
|
|
|
10 |
pipe = pipe.to(device)
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from torchvision import transforms
|
4 |
+
from diffusers import StableDiffusionPipeline
|
5 |
+
from model import ResNet, ResidualBlock
|
6 |
+
from attack import Attack
|
7 |
|
8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
9 |
|
10 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
11 |
+
"stabilityai/stable-diffusion-2-1-base"
|
12 |
+
)
|
13 |
pipe = pipe.to(device)
|
14 |
|
15 |
+
CLASSES = (
|
16 |
+
"plane",
|
17 |
+
"car",
|
18 |
+
"bird",
|
19 |
+
"cat",
|
20 |
+
"deer",
|
21 |
+
"dog",
|
22 |
+
"frog",
|
23 |
+
"horse",
|
24 |
+
"ship",
|
25 |
+
"truck",
|
26 |
+
)
|
27 |
+
|
28 |
+
|
29 |
+
def load_classifer(model_path):
|
30 |
+
# load resnet model
|
31 |
+
model = ResNet(ResidualBlock, [2, 2, 2])
|
32 |
+
model.load_state_dict(torch.load(model_path))
|
33 |
+
model.eval()
|
34 |
+
return model
|
35 |
+
|
36 |
+
|
37 |
+
classifer = load_classifer("./models/resnet.ckpt")
|
38 |
+
attack = Attack(pipe, classifer, device)
|
39 |
+
|
40 |
+
|
41 |
+
def classifer_pred(image):
|
42 |
+
to_pil = transforms.ToPILImage()
|
43 |
+
input = attack.transform(to_pil(image[0]))
|
44 |
+
outputs = classifer(input)
|
45 |
+
_, predicted = torch.max(outputs, 1)
|
46 |
+
return CLASSES[predicted[0]]
|
47 |
+
|
48 |
+
|
49 |
+
def run_attack(prompt, epsilon):
|
50 |
+
image, perturbed_image = attack(prompt, epsilon=epsilon)
|
51 |
+
pred = classifer_pred(perturbed_image)
|
52 |
+
return image, pred
|
53 |
+
|
54 |
+
|
55 |
+
demo = gr.Interface(
|
56 |
+
run_attack,
|
57 |
+
[gr.Text(), gr.Slider(minimum=0.0, maximum=0.3, value=float)],
|
58 |
+
[gr.Image(), gr.Text()],
|
59 |
+
title="Stable Diffused Adversarial Attacks",
|
60 |
+
)
|
61 |
+
demo.launch()
|
attack.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torchvision import transforms
|
3 |
+
|
4 |
+
|
5 |
+
class Attack:
|
6 |
+
def __init__(self, pipe, classifer, device="cuda"):
|
7 |
+
self.device = device
|
8 |
+
self.pipe = pipe
|
9 |
+
self.generator = torch.Generator(device=self.device).manual_seed(1024)
|
10 |
+
self.classifer = classifer
|
11 |
+
|
12 |
+
def __call__(
|
13 |
+
self, prompt, negative_prompt="", size=512, guidance_scale=8, epsilon=0
|
14 |
+
):
|
15 |
+
pipe_output = self.pipe(
|
16 |
+
prompt=prompt, # What to generate
|
17 |
+
negative_prompt=negative_prompt, # What NOT to generate
|
18 |
+
height=size,
|
19 |
+
width=size, # Specify the image size
|
20 |
+
guidance_scale=guidance_scale, # How strongly to follow the prompt
|
21 |
+
num_inference_steps=30, # How many steps to take
|
22 |
+
generator=self.generator, # Fixed random seed
|
23 |
+
)
|
24 |
+
|
25 |
+
# Resulting image:
|
26 |
+
init_image = pipe_output.images[0]
|
27 |
+
image = self.transform(init_image)
|
28 |
+
|
29 |
+
image.requires_grad = True
|
30 |
+
|
31 |
+
outputs = self.classifer(image).to(self.device)
|
32 |
+
|
33 |
+
target = torch.tensor([0]).to(self.device)
|
34 |
+
|
35 |
+
return (
|
36 |
+
init_image,
|
37 |
+
self.untargeted_attack(image, outputs, target, epsilon),
|
38 |
+
)
|
39 |
+
|
40 |
+
def transform(self, image):
|
41 |
+
img_tfms = transforms.Compose(
|
42 |
+
[transforms.Resize(32), transforms.ToTensor()]
|
43 |
+
)
|
44 |
+
image = img_tfms(image)
|
45 |
+
image = torch.unsqueeze(image, dim=0)
|
46 |
+
return image
|
47 |
+
|
48 |
+
def untargeted_attack(self, image, pred, target, epsilon):
|
49 |
+
loss = torch.nn.functional.nll_loss(pred, target)
|
50 |
+
|
51 |
+
self.classifer.zero_grad()
|
52 |
+
|
53 |
+
loss.backward()
|
54 |
+
|
55 |
+
gradient_sign = image.grad.data.sign()
|
56 |
+
perturbed_image = image + epsilon * gradient_sign
|
57 |
+
perturbed_image = torch.clamp(perturbed_image, 0, 1)
|
58 |
+
|
59 |
+
return perturbed_image
|
model.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
|
3 |
+
|
4 |
+
def conv3x3(in_channels, out_channels, stride=1):
|
5 |
+
return nn.Conv2d(
|
6 |
+
in_channels,
|
7 |
+
out_channels,
|
8 |
+
kernel_size=3,
|
9 |
+
stride=stride,
|
10 |
+
padding=1,
|
11 |
+
bias=False,
|
12 |
+
)
|
13 |
+
|
14 |
+
|
15 |
+
class ResidualBlock(nn.Module):
|
16 |
+
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
|
17 |
+
super(ResidualBlock, self).__init__()
|
18 |
+
self.conv1 = conv3x3(in_channels, out_channels, stride)
|
19 |
+
self.bn1 = nn.BatchNorm2d(out_channels)
|
20 |
+
self.relu = nn.ReLU(inplace=True)
|
21 |
+
self.conv2 = conv3x3(out_channels, out_channels)
|
22 |
+
self.bn2 = nn.BatchNorm2d(out_channels)
|
23 |
+
self.downsample = downsample
|
24 |
+
|
25 |
+
def forward(self, x):
|
26 |
+
residual = x
|
27 |
+
out = self.conv1(x)
|
28 |
+
out = self.bn1(out)
|
29 |
+
out = self.relu(out)
|
30 |
+
out = self.conv2(out)
|
31 |
+
out = self.bn2(out)
|
32 |
+
if self.downsample:
|
33 |
+
residual = self.downsample(x)
|
34 |
+
out += residual
|
35 |
+
out = self.relu(out)
|
36 |
+
return out
|
37 |
+
|
38 |
+
|
39 |
+
class ResNet(nn.Module):
|
40 |
+
def __init__(self, block, layers, num_classes=10):
|
41 |
+
super(ResNet, self).__init__()
|
42 |
+
self.in_channels = 16
|
43 |
+
self.conv = conv3x3(3, 16)
|
44 |
+
self.bn = nn.BatchNorm2d(16)
|
45 |
+
self.relu = nn.ReLU(inplace=True)
|
46 |
+
self.layer1 = self.make_layer(block, 16, layers[0])
|
47 |
+
self.layer2 = self.make_layer(block, 32, layers[1], 2)
|
48 |
+
self.layer3 = self.make_layer(block, 64, layers[2], 2)
|
49 |
+
self.avg_pool = nn.AvgPool2d(8)
|
50 |
+
self.fc = nn.Linear(64, num_classes)
|
51 |
+
|
52 |
+
def make_layer(self, block, out_channels, blocks, stride=1):
|
53 |
+
downsample = None
|
54 |
+
if (stride != 1) or (self.in_channels != out_channels):
|
55 |
+
downsample = nn.Sequential(
|
56 |
+
conv3x3(self.in_channels, out_channels, stride=stride),
|
57 |
+
nn.BatchNorm2d(out_channels),
|
58 |
+
)
|
59 |
+
layers = []
|
60 |
+
layers.append(
|
61 |
+
block(self.in_channels, out_channels, stride, downsample)
|
62 |
+
)
|
63 |
+
self.in_channels = out_channels
|
64 |
+
for i in range(1, blocks):
|
65 |
+
layers.append(block(out_channels, out_channels))
|
66 |
+
return nn.Sequential(*layers)
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
out = self.conv(x)
|
70 |
+
out = self.bn(out)
|
71 |
+
out = self.relu(out)
|
72 |
+
out = self.layer1(out)
|
73 |
+
out = self.layer2(out)
|
74 |
+
out = self.layer3(out)
|
75 |
+
out = self.avg_pool(out)
|
76 |
+
out = out.view(out.size(0), -1)
|
77 |
+
out = self.fc(out)
|
78 |
+
return out
|
models/resnet.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f103f240fcc6500cf05aebda74a2eba82112fe34f799a0e1f8c93b8704ce4de8
|
3 |
+
size 812339
|