WICKED4950 commited on
Commit
8b5d762
·
verified ·
1 Parent(s): 333e9b3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +59 -58
app.py CHANGED
@@ -1,64 +1,65 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, TFBlenderbotForConditionalGeneration
3
+ import tensorflow as tf
4
+ import json
5
+ import os
6
+ from datetime import datetime
7
 
8
+ data = {"Interactions":[]}
9
+ with open("question_answer.json", "w") as file:
10
+ json.dump(data, file, indent=4)
 
11
 
12
+ print("Loading the model......")
13
+ model_name = "WICKED4950/Esther_V1"
14
+ strategy = tf.distribute.MirroredStrategy()
15
+ tf.config.optimizer.set_jit(True) # Enable XLA
16
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
17
+ with strategy.scope():
18
+ model = TFBlenderbotForConditionalGeneration.from_pretrained(model_name)
19
 
20
+ def save_question(question,answer,path = "question_answer.json"):
21
+ with open(path, "r") as file:
22
+ data = json.load(file)
23
+ data["Interactions"].append({"Question:":question,"Answer:":answer,"Time:":datetime.now().strftime("%Y-%m-%d %H:%M:%S")})
24
+ with open(path, "w") as file:
25
+ json.dump(data, file, indent=4)
26
+
27
+ print("Interface getting done....")
28
+ # Define the chatbot function
29
+ def predict(user_input):
30
+ if user_input == "Print_data_hmm":
31
+ with open("question_answer.json", "r") as file:
32
+ print(json.load(file))
33
+ return "Done"
34
+ else:
35
+ inputs = tokenizer(user_input, return_tensors="tf", padding=True, truncation=True,max_length=128)
36
+
37
+ # Generate the response using the model
38
+ response_id = model.generate(
39
+ inputs['input_ids'],
40
+ max_length=128, # Set max length of response
41
+ do_sample=True, # Sampling for variability
42
+ top_k=20, # Consider top 50 tokens
43
+ top_p=0.90, # Nucleus sampling
44
+ temperature=0.8 # Adjusts creativity of response
45
+ )
46
+
47
+ # Decode the response
48
+ response = tokenizer.decode(response_id[0], skip_special_tokens=True)
49
+ save_question(question = user_input,answer=response)
50
+ return response
51
 
52
+ # Gradio interface
53
+ gr.Interface(
54
+ fn=predict,
55
+ inputs=gr.Textbox(label="Ask Esther anything!"),
56
+ outputs=gr.Textbox(label="Esther's Response"),
57
+ examples=[
58
+ ["What should I do if I'm feeling down?"],
59
+ ["How do I deal with stress?"],
60
+ ["Tell me something positive!"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
  ],
62
+ description="A chatbot trained to provide friendly and comforting responses. Type your question below and let Esther help!",
63
+ title="Esther - Your Friendly Mental Health Chatbot",
64
+
65
+ ).launch()