EstherV2 / app.py
WICKED4950's picture
Update app.py
bcd6a17 verified
import gradio as gr
from huggingface_hub import InferenceClient, login
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForCausalLM
import os
# Set up mixed precision and distribution strategy
policy = tf.keras.mixed_precision.Policy('mixed_bfloat16')
tf.keras.mixed_precision.set_global_policy(policy)
strategy = tf.distribute.MultiWorkerMirroredStrategy()
# Log into Hugging Face
login(os.environ.get("hf_token"))
# Load tokenizer and model
name = "WICKED4950/GPT2-InstEsther0.28eV3.1"
tokenizer = AutoTokenizer.from_pretrained(name)
tokenizer.pad_token = tokenizer.eos_token
with strategy.scope():
model = TFAutoModelForCausalLM.from_pretrained(name)
# Raw Prediction Function
def raw_pred(input, model, tokenizer, max_length=1024, temperature=0.2):
input_ids = tokenizer.encode(input, return_tensors='tf')
# Initialize variables
generated_ids = input_ids
stop_token_id = tokenizer.encode("<|SOH|>", add_special_tokens=False)[0]
all_generated_tokens = [] # To store generated token IDs
tokens_yielded = [] # To store tokens as they are yielded
with strategy.scope():
for _ in range(max_length // 1): # Generate in chunks of 3 tokens
# Generate tokens
outputs = model.generate(
generated_ids,
max_length=generated_ids.shape[1] + 1,
temperature=temperature,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=stop_token_id,
do_sample=True,
num_return_sequences=1
)
# Get the newly generated tokens
new_tokens = outputs[0, -1:]
generated_ids = outputs # Update the generated_ids with the new tokens
# Store and yield the generated tokens
all_generated_tokens.extend(new_tokens.numpy().tolist())
tokens_text = tokenizer.decode(new_tokens, skip_special_tokens=False)
tokens_yielded.append(tokens_text)
yield tokens_text
# Stop if stop token is encountered
if stop_token_id in new_tokens.numpy():
final_text = tokenizer.decode(all_generated_tokens, skip_special_tokens=False)
yield "<|Clean|>" + final_text
break
# Response Handler Function
def respond(message, history):
give_mod = ""
history = history[-3:] # Limit history to last 3 exchanges
for chunk in history:
give_mod += f"<|SOH|>{chunk[0]}<|SOB|>{chunk[1]}"
give_mod += f"<|SOH|>{message.capitalize()}<|SOB|>"
print(give_mod)
response = ""
for token in raw_pred(give_mod, model, tokenizer):
if "<|Clean|>" in token:
response = token
print(response)
else:
response += token
yield response.replace("<|SOH|>", "").replace("<|Clean|>", "")
# Gradio Chat Interface Setup
demo = gr.ChatInterface(
fn=respond,
title="Chat with Esther", # Title of the app
description="A friendly chatbot ready to help and chat with you! 😊", # Description of the app
theme="compact", # Choose the theme
)
if __name__ == "__main__":
demo.launch(debug=True)