Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,74 +1,78 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
return "I'm doing great, thanks for asking! How about you?"
|
15 |
-
elif "bye" in message.lower():
|
16 |
-
return "Goodbye! Have a nice day!"
|
17 |
-
else:
|
18 |
-
return "Sorry, I don't understand. Can you ask something else?"
|
19 |
|
20 |
-
def
|
21 |
-
|
22 |
-
history: list[tuple[str, str]],
|
23 |
-
system_message,
|
24 |
-
max_tokens,
|
25 |
-
temperature,
|
26 |
-
top_p,
|
27 |
-
):
|
28 |
-
# Rule-based response logic (for now)
|
29 |
-
response = rule_based_response(history, message)
|
30 |
-
|
31 |
-
# If the rule-based model cannot respond, fall back to the HuggingFace model
|
32 |
-
if response:
|
33 |
-
return response, history
|
34 |
|
35 |
-
#
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
if val[1]:
|
41 |
-
messages.append({"role": "assistant", "content": val[1]})
|
42 |
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
# Gradio Chat Interface Setup
|
58 |
demo = gr.ChatInterface(
|
59 |
-
respond
|
60 |
-
additional_inputs=[
|
61 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
62 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
63 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
64 |
-
gr.Slider(
|
65 |
-
minimum=0.1,
|
66 |
-
maximum=1.0,
|
67 |
-
value=0.95,
|
68 |
-
step=0.05,
|
69 |
-
label="Top-p (nucleus sampling)",
|
70 |
-
),
|
71 |
-
],
|
72 |
)
|
73 |
|
74 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
import tensorflow as tf
|
4 |
+
from huggingface_hub import login, create_repo, upload_file
|
5 |
+
from transformers import AutoTokenizer, TFAutoModelForCausalLM
|
6 |
+
policy = tf.keras.mixed_precision.Policy('mixed_bfloat16')
|
7 |
+
tf.keras.mixed_precision.set_global_policy(policy)
|
8 |
+
strategy = tf.distribute.MultiWorkerMirroredStrategy()
|
9 |
|
10 |
+
login(os.environ.get("hf_token"))
|
|
|
|
|
|
|
11 |
|
12 |
+
name = "WICKED4950/GPT2-InstEsther0.21eV3.1"
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(name)
|
14 |
+
tokenizer.pad_token = tokenizer.eos_token
|
15 |
+
with strategy.scope():
|
16 |
+
model = TFAutoModelForCausalLM.from_pretrained(name)
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
def raw_pred(input, model, tokenizer, max_length=50, temperature=0.2):
|
19 |
+
input_ids = tokenizer.encode(input, return_tensors='tf')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Initialize variables
|
22 |
+
generated_ids = input_ids
|
23 |
+
stop_token_id = tokenizer.encode("<|SOH|>", add_special_tokens=False)[0] # ID for <|SOH|>
|
24 |
+
all_generated_tokens = [] # To store generated token IDs
|
25 |
+
tokens_yielded = [] # To store tokens as they are yielded
|
|
|
|
|
26 |
|
27 |
+
with strategy.scope():
|
28 |
+
for _ in range(max_length // 1): # Generate in chunks of 3 tokens
|
29 |
+
# Generate three tokens at a time
|
30 |
+
outputs = model.generate(
|
31 |
+
generated_ids,
|
32 |
+
max_length=generated_ids.shape[1] + 1, # Increment max length by 3
|
33 |
+
temperature=temperature,
|
34 |
+
pad_token_id=tokenizer.eos_token_id,
|
35 |
+
eos_token_id=stop_token_id, # Stop generation at <|SOH|>
|
36 |
+
do_sample=True,
|
37 |
+
num_return_sequences=1
|
38 |
+
)
|
39 |
|
40 |
+
# Get the newly generated tokens (last 3 tokens)
|
41 |
+
new_tokens = outputs[0, -1:]
|
42 |
+
generated_ids = outputs # Update the generated_ids with the new tokens
|
43 |
+
|
44 |
+
# Store the generated tokens as numbers (IDs)
|
45 |
+
all_generated_tokens.extend(new_tokens.numpy().tolist())
|
46 |
+
|
47 |
+
# Decode and yield the tokens as they are generated (as numbers)
|
48 |
+
tokens_text = tokenizer.decode(new_tokens, skip_special_tokens=False)
|
49 |
+
tokens_yielded.append(tokens_text)
|
50 |
+
yield tokens_text
|
51 |
|
52 |
+
# Stop if the generated tokens include <|SOH|>
|
53 |
+
if stop_token_id in new_tokens.numpy():
|
54 |
+
final_text = tokenizer.decode(all_generated_tokens, skip_special_tokens=False)
|
55 |
+
yield ("<|Clean|>" + final_text)
|
56 |
+
break
|
57 |
+
|
58 |
+
def respond(message, history):
|
59 |
+
# Prepare input for the model
|
60 |
+
give_mod = ""
|
61 |
+
for chunk in history:
|
62 |
+
give_mod = give_mod + "<|SOH|>" + chunk[0] + "<|SOB|>" + chunk[1]
|
63 |
+
give_mod = give_mod + "<|SOH|>" + message + "<|SOB|>"
|
64 |
+
print(give_mod)
|
65 |
+
response = ""
|
66 |
+
for token in raw_pred(give_mod, model, tokenizer):
|
67 |
+
if "<|Clean|>" in token:
|
68 |
+
response = token
|
69 |
+
else:
|
70 |
+
response += token
|
71 |
+
yield response.replace("<|SOH|>","").replace("<|Clean|>","")
|
72 |
+
print(response)
|
73 |
# Gradio Chat Interface Setup
|
74 |
demo = gr.ChatInterface(
|
75 |
+
respond
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
)
|
77 |
|
78 |
if __name__ == "__main__":
|