Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,83 +1,87 @@
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
import tensorflow as tf
|
4 |
-
from huggingface_hub import login, create_repo, upload_file
|
5 |
-
import os
|
6 |
from transformers import AutoTokenizer, TFAutoModelForCausalLM
|
|
|
|
|
|
|
7 |
policy = tf.keras.mixed_precision.Policy('mixed_bfloat16')
|
8 |
tf.keras.mixed_precision.set_global_policy(policy)
|
9 |
strategy = tf.distribute.MultiWorkerMirroredStrategy()
|
10 |
|
|
|
11 |
login(os.environ.get("hf_token"))
|
|
|
|
|
12 |
name = "WICKED4950/GPT2mini-InstEsther0.5eV3.2"
|
13 |
tokenizer = AutoTokenizer.from_pretrained(name)
|
14 |
tokenizer.pad_token = tokenizer.eos_token
|
|
|
15 |
with strategy.scope():
|
16 |
model = TFAutoModelForCausalLM.from_pretrained(name)
|
17 |
|
|
|
18 |
def raw_pred(input, model, tokenizer, max_length=1024, temperature=0.2):
|
19 |
input_ids = tokenizer.encode(input, return_tensors='tf')
|
20 |
|
21 |
# Initialize variables
|
22 |
generated_ids = input_ids
|
23 |
-
stop_token_id = tokenizer.encode("<|SOH|>", add_special_tokens=False)[0]
|
24 |
all_generated_tokens = [] # To store generated token IDs
|
25 |
tokens_yielded = [] # To store tokens as they are yielded
|
26 |
|
27 |
with strategy.scope():
|
28 |
for _ in range(max_length // 1): # Generate in chunks of 3 tokens
|
29 |
-
# Generate
|
30 |
outputs = model.generate(
|
31 |
generated_ids,
|
32 |
-
max_length=generated_ids.shape[1] + 1,
|
33 |
temperature=temperature,
|
34 |
pad_token_id=tokenizer.eos_token_id,
|
35 |
-
eos_token_id=stop_token_id,
|
36 |
do_sample=True,
|
37 |
num_return_sequences=1
|
38 |
)
|
39 |
|
40 |
-
# Get the newly generated tokens
|
41 |
new_tokens = outputs[0, -1:]
|
42 |
generated_ids = outputs # Update the generated_ids with the new tokens
|
43 |
|
44 |
-
# Store the generated tokens
|
45 |
all_generated_tokens.extend(new_tokens.numpy().tolist())
|
46 |
-
|
47 |
-
# Decode and yield the tokens as they are generated (as numbers)
|
48 |
tokens_text = tokenizer.decode(new_tokens, skip_special_tokens=False)
|
49 |
tokens_yielded.append(tokens_text)
|
50 |
yield tokens_text
|
51 |
|
52 |
-
# Stop if
|
53 |
if stop_token_id in new_tokens.numpy():
|
54 |
final_text = tokenizer.decode(all_generated_tokens, skip_special_tokens=False)
|
55 |
-
yield
|
56 |
break
|
57 |
|
|
|
58 |
def respond(message, history):
|
59 |
-
# Prepare input for the model
|
60 |
give_mod = ""
|
61 |
-
history = history[-3:]
|
62 |
for chunk in history:
|
63 |
-
give_mod
|
64 |
-
give_mod
|
65 |
-
|
66 |
response = ""
|
67 |
for token in raw_pred(give_mod, model, tokenizer):
|
68 |
if "<|Clean|>" in token:
|
69 |
response = token
|
70 |
else:
|
71 |
response += token
|
72 |
-
yield response.replace("<|SOH|>","").replace("<|Clean|>","")
|
73 |
-
|
74 |
# Gradio Chat Interface Setup
|
75 |
demo = gr.ChatInterface(
|
76 |
-
fn=respond,
|
77 |
-
title="Chat with Esther", #
|
78 |
-
description="A friendly chatbot ready to help and chat with you! 😊", #
|
79 |
-
theme="compact", #
|
80 |
)
|
81 |
|
82 |
if __name__ == "__main__":
|
83 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient, login
|
3 |
import tensorflow as tf
|
|
|
|
|
4 |
from transformers import AutoTokenizer, TFAutoModelForCausalLM
|
5 |
+
import os
|
6 |
+
|
7 |
+
# Set up mixed precision and distribution strategy
|
8 |
policy = tf.keras.mixed_precision.Policy('mixed_bfloat16')
|
9 |
tf.keras.mixed_precision.set_global_policy(policy)
|
10 |
strategy = tf.distribute.MultiWorkerMirroredStrategy()
|
11 |
|
12 |
+
# Log into Hugging Face
|
13 |
login(os.environ.get("hf_token"))
|
14 |
+
|
15 |
+
# Load tokenizer and model
|
16 |
name = "WICKED4950/GPT2mini-InstEsther0.5eV3.2"
|
17 |
tokenizer = AutoTokenizer.from_pretrained(name)
|
18 |
tokenizer.pad_token = tokenizer.eos_token
|
19 |
+
|
20 |
with strategy.scope():
|
21 |
model = TFAutoModelForCausalLM.from_pretrained(name)
|
22 |
|
23 |
+
# Raw Prediction Function
|
24 |
def raw_pred(input, model, tokenizer, max_length=1024, temperature=0.2):
|
25 |
input_ids = tokenizer.encode(input, return_tensors='tf')
|
26 |
|
27 |
# Initialize variables
|
28 |
generated_ids = input_ids
|
29 |
+
stop_token_id = tokenizer.encode("<|SOH|>", add_special_tokens=False)[0]
|
30 |
all_generated_tokens = [] # To store generated token IDs
|
31 |
tokens_yielded = [] # To store tokens as they are yielded
|
32 |
|
33 |
with strategy.scope():
|
34 |
for _ in range(max_length // 1): # Generate in chunks of 3 tokens
|
35 |
+
# Generate tokens
|
36 |
outputs = model.generate(
|
37 |
generated_ids,
|
38 |
+
max_length=generated_ids.shape[1] + 1,
|
39 |
temperature=temperature,
|
40 |
pad_token_id=tokenizer.eos_token_id,
|
41 |
+
eos_token_id=stop_token_id,
|
42 |
do_sample=True,
|
43 |
num_return_sequences=1
|
44 |
)
|
45 |
|
46 |
+
# Get the newly generated tokens
|
47 |
new_tokens = outputs[0, -1:]
|
48 |
generated_ids = outputs # Update the generated_ids with the new tokens
|
49 |
|
50 |
+
# Store and yield the generated tokens
|
51 |
all_generated_tokens.extend(new_tokens.numpy().tolist())
|
|
|
|
|
52 |
tokens_text = tokenizer.decode(new_tokens, skip_special_tokens=False)
|
53 |
tokens_yielded.append(tokens_text)
|
54 |
yield tokens_text
|
55 |
|
56 |
+
# Stop if stop token is encountered
|
57 |
if stop_token_id in new_tokens.numpy():
|
58 |
final_text = tokenizer.decode(all_generated_tokens, skip_special_tokens=False)
|
59 |
+
yield "<|Clean|>" + final_text
|
60 |
break
|
61 |
|
62 |
+
# Response Handler Function
|
63 |
def respond(message, history):
|
|
|
64 |
give_mod = ""
|
65 |
+
history = history[-3:] # Limit history to last 3 exchanges
|
66 |
for chunk in history:
|
67 |
+
give_mod += f"<|SOH|>{chunk[0]}<|SOB|>{chunk[1]}"
|
68 |
+
give_mod += f"<|SOH|>{message.capitalize()}<|SOB|>"
|
69 |
+
|
70 |
response = ""
|
71 |
for token in raw_pred(give_mod, model, tokenizer):
|
72 |
if "<|Clean|>" in token:
|
73 |
response = token
|
74 |
else:
|
75 |
response += token
|
76 |
+
yield response.replace("<|SOH|>", "").replace("<|Clean|>", "")
|
77 |
+
|
78 |
# Gradio Chat Interface Setup
|
79 |
demo = gr.ChatInterface(
|
80 |
+
fn=respond,
|
81 |
+
title="Chat with Esther", # Title of the app
|
82 |
+
description="A friendly chatbot ready to help and chat with you! 😊", # Description of the app
|
83 |
+
theme="compact", # Choose the theme
|
84 |
)
|
85 |
|
86 |
if __name__ == "__main__":
|
87 |
+
demo.launch(debug=True)
|