Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,11 @@ import tensorflow as tf
|
|
4 |
import json
|
5 |
import os
|
6 |
|
|
|
|
|
|
|
|
|
|
|
7 |
print("Loading the model......")
|
8 |
model_name = "WICKED4950/Irisonego5"
|
9 |
strategy = tf.distribute.MirroredStrategy()
|
@@ -13,35 +18,36 @@ with strategy.scope():
|
|
13 |
model = TFBlenderbotForConditionalGeneration.from_pretrained(model_name)
|
14 |
|
15 |
def save_question(question,answer,path = "question_answer.json"):
|
16 |
-
print(f"Saving data to: {os.path.abspath(path)}")
|
17 |
with open(path, "r") as file:
|
18 |
data = json.load(file)
|
19 |
data["Interactions"].append({"Question:":question,"Answer:":answer})
|
20 |
print(data)
|
21 |
with open(path, "w") as file:
|
22 |
json.dump(data, file, indent=4)
|
23 |
-
print("saving question")
|
24 |
|
25 |
print("Interface getting done....")
|
26 |
# Define the chatbot function
|
27 |
def predict(user_input):
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
45 |
|
46 |
# Gradio interface
|
47 |
gr.Interface(
|
|
|
4 |
import json
|
5 |
import os
|
6 |
|
7 |
+
data = {"Interactions":[]}
|
8 |
+
|
9 |
+
with open("question_answer.json", "w") as file:
|
10 |
+
json.dump(data, file, indent=4)
|
11 |
+
|
12 |
print("Loading the model......")
|
13 |
model_name = "WICKED4950/Irisonego5"
|
14 |
strategy = tf.distribute.MirroredStrategy()
|
|
|
18 |
model = TFBlenderbotForConditionalGeneration.from_pretrained(model_name)
|
19 |
|
20 |
def save_question(question,answer,path = "question_answer.json"):
|
|
|
21 |
with open(path, "r") as file:
|
22 |
data = json.load(file)
|
23 |
data["Interactions"].append({"Question:":question,"Answer:":answer})
|
24 |
print(data)
|
25 |
with open(path, "w") as file:
|
26 |
json.dump(data, file, indent=4)
|
|
|
27 |
|
28 |
print("Interface getting done....")
|
29 |
# Define the chatbot function
|
30 |
def predict(user_input):
|
31 |
+
if user_input == "Print_data_hmm":
|
32 |
+
print(json.dumps(data, indent=4))
|
33 |
+
return "Done"
|
34 |
+
else:
|
35 |
+
inputs = tokenizer(user_input, return_tensors="tf", padding=True, truncation=True)
|
36 |
+
|
37 |
+
# Generate the response using the model
|
38 |
+
response_id = model.generate(
|
39 |
+
inputs['input_ids'],
|
40 |
+
max_length=128, # Set max length of response
|
41 |
+
do_sample=True, # Sampling for variability
|
42 |
+
top_k=15, # Consider top 50 tokens
|
43 |
+
top_p=0.95, # Nucleus sampling
|
44 |
+
temperature=0.8 # Adjusts creativity of response
|
45 |
+
)
|
46 |
+
|
47 |
+
# Decode the response
|
48 |
+
response = tokenizer.decode(response_id[0], skip_special_tokens=True)
|
49 |
+
save_question(question = user_input,answer=response)
|
50 |
+
return response
|
51 |
|
52 |
# Gradio interface
|
53 |
gr.Interface(
|