import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer print("Loading the model......") model_name = "WICKED4950/Irisonego5" strategy = tf.distribute.MirroredStrategy() tf.config.optimizer.set_jit(True) # Enable XLA tokenizer = AutoTokenizer.from_pretrained(model_name) with strategy.scope(): model = AutoModelForCausalLM.from_pretrained(model_name) print("Interface getting done....") # Define the chatbot function def predict(user_input): # Tokenize input text inputs = tokenizer(user_input, return_tensors="tf", padding=True, truncation=True) # Generate the response using the model response_ids = model.generate( inputs['input_ids'], max_length=128, # Set max length of response do_sample=True, # Sampling for variability top_k=15, # Consider top 50 tokens top_p=0.95, # Nucleus sampling temperature=0.8 # Adjusts creativity of response ) # Decode the response response = tokenizer.decode(response_id[0], skip_special_tokens=True) return response # Gradio interface iface = gr.Interface(fn=predict, inputs="text", outputs="text", title="Your Chatbot") print("Deploying") iface.launch()