Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,33 +1,11 @@
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI, Request, HTTPException
|
2 |
-
from transformers import pipeline
|
3 |
-
import io
|
4 |
import librosa
|
5 |
-
|
6 |
-
|
7 |
app = FastAPI()
|
8 |
-
# Device configuration
|
9 |
-
# Load the model and processor
|
10 |
-
model_id = "whitefox123/whisper-small-ar2"
|
11 |
-
model = WhisperForConditionalGeneration.from_pretrained(
|
12 |
-
model_id
|
13 |
-
)
|
14 |
-
import torch
|
15 |
-
|
16 |
-
processor = WhisperProcessor.from_pretrained('whitefox123/whisper-small-ar2')
|
17 |
-
model.config.forced_decoder_ids = None
|
18 |
-
forced_decoder_ids = processor.get_decoder_prompt_ids(language="Arabic", task="transcribe")
|
19 |
-
model.generation_config.cache_implementation = "static"
|
20 |
-
from transformers import GenerationConfig, WhisperForConditionalGeneration
|
21 |
-
generation_config = GenerationConfig.from_pretrained("openai/whisper-small") # if you are using a multilingual model
|
22 |
-
model.generation_config = generation_config
|
23 |
-
|
24 |
-
pipe = pipeline(
|
25 |
-
"automatic-speech-recognition",
|
26 |
-
model=model,
|
27 |
-
tokenizer=processor.tokenizer,
|
28 |
-
feature_extractor=processor.feature_extractor,
|
29 |
-
|
30 |
-
)
|
31 |
|
32 |
@app.post("/transcribe/")
|
33 |
async def transcribe_audio(request: Request):
|
@@ -41,18 +19,13 @@ async def transcribe_audio(request: Request):
|
|
41 |
# Load the audio file using pydub
|
42 |
audio_array, sampling_rate = librosa.load(audio_file, sr=16000)
|
43 |
|
44 |
-
# Process the audio array
|
45 |
-
input_features = processor(audio_array, sampling_rate=sampling_rate, return_tensors="pt").input_features
|
46 |
-
|
47 |
-
# Generate token ids
|
48 |
-
predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids, return_timestamps=True)
|
49 |
-
|
50 |
# Decode token ids to text
|
51 |
-
transcription =
|
|
|
52 |
|
53 |
# Print the transcription
|
54 |
-
print(transcription[
|
55 |
|
56 |
-
return {"transcription": transcription[
|
57 |
except Exception as e:
|
58 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
3 |
+
from datasets import load_dataset
|
4 |
from fastapi import FastAPI, Request, HTTPException
|
|
|
|
|
5 |
import librosa
|
6 |
+
import io
|
7 |
+
whisper = pipeline("automatic-speech-recognition", "whitefox123/whisper-small-ar2", torch_dtype=torch.float16, device="cpu")
|
8 |
app = FastAPI()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
@app.post("/transcribe/")
|
11 |
async def transcribe_audio(request: Request):
|
|
|
19 |
# Load the audio file using pydub
|
20 |
audio_array, sampling_rate = librosa.load(audio_file, sr=16000)
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
# Decode token ids to text
|
23 |
+
transcription = whisper(audio_array)
|
24 |
+
|
25 |
|
26 |
# Print the transcription
|
27 |
+
print(transcription['text']) # Display the transcriptiontry:
|
28 |
|
29 |
+
return {"transcription": transcription['text']}
|
30 |
except Exception as e:
|
31 |
raise HTTPException(status_code=500, detail=str(e))
|