Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,49 +3,56 @@ from transformers import pipeline
|
|
3 |
import io
|
4 |
import librosa
|
5 |
from transformers import WhisperForConditionalGeneration, WhisperProcessor
|
6 |
-
from faster_whisper import WhisperModel
|
7 |
-
import multiprocessing
|
8 |
|
9 |
app = FastAPI()
|
10 |
# Device configuration
|
11 |
# Load the model and processor
|
12 |
-
|
13 |
-
import torch
|
14 |
-
|
15 |
model_id = "WajeehAzeemX/whisper-smal-ar-testing-kale-5000"
|
16 |
model = WhisperForConditionalGeneration.from_pretrained(
|
17 |
model_id
|
18 |
)
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
pipe = pipeline(
|
21 |
"automatic-speech-recognition",
|
22 |
model=model,
|
23 |
tokenizer=processor.tokenizer,
|
24 |
-
feature_extractor=processor.feature_extractor
|
|
|
25 |
)
|
26 |
|
27 |
-
|
28 |
@app.post("/transcribe/")
|
29 |
async def transcribe_audio(request: Request):
|
30 |
try:
|
31 |
# Read binary data from the request
|
32 |
audio_data = await request.body()
|
|
|
33 |
# Convert binary data to a file-like object
|
34 |
audio_file = io.BytesIO(audio_data)
|
35 |
-
|
|
|
36 |
audio_array, sampling_rate = librosa.load(audio_file, sr=16000)
|
37 |
-
|
38 |
-
#
|
39 |
-
|
40 |
-
|
41 |
-
#
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
44 |
# Print the transcription
|
45 |
-
print(transcription)
|
46 |
print(transcription[0]) # Display the transcriptiontry:
|
|
|
47 |
return {"transcription": transcription[0]}
|
48 |
except Exception as e:
|
49 |
-
raise HTTPException(status_code=500, detail=str(e))
|
50 |
-
|
51 |
-
|
|
|
3 |
import io
|
4 |
import librosa
|
5 |
from transformers import WhisperForConditionalGeneration, WhisperProcessor
|
|
|
|
|
6 |
|
7 |
app = FastAPI()
|
8 |
# Device configuration
|
9 |
# Load the model and processor
|
|
|
|
|
|
|
10 |
model_id = "WajeehAzeemX/whisper-smal-ar-testing-kale-5000"
|
11 |
model = WhisperForConditionalGeneration.from_pretrained(
|
12 |
model_id
|
13 |
)
|
14 |
+
import torch
|
15 |
+
|
16 |
+
processor = WhisperProcessor.from_pretrained('WajeehAzeemX/whisper-smal-ar-testing-kale-5000')
|
17 |
+
model.config.forced_decoder_ids = None
|
18 |
+
forced_decoder_ids = processor.get_decoder_prompt_ids(language="Arabic", task="transcribe")
|
19 |
+
model.generation_config.cache_implementation = "static"
|
20 |
+
from transformers import GenerationConfig, WhisperForConditionalGeneration
|
21 |
+
generation_config = GenerationConfig.from_pretrained("openai/whisper-small") # if you are using a multilingual model
|
22 |
+
model.generation_config = generation_config
|
23 |
+
|
24 |
pipe = pipeline(
|
25 |
"automatic-speech-recognition",
|
26 |
model=model,
|
27 |
tokenizer=processor.tokenizer,
|
28 |
+
feature_extractor=processor.feature_extractor,
|
29 |
+
|
30 |
)
|
31 |
|
|
|
32 |
@app.post("/transcribe/")
|
33 |
async def transcribe_audio(request: Request):
|
34 |
try:
|
35 |
# Read binary data from the request
|
36 |
audio_data = await request.body()
|
37 |
+
|
38 |
# Convert binary data to a file-like object
|
39 |
audio_file = io.BytesIO(audio_data)
|
40 |
+
|
41 |
+
# Load the audio file using pydub
|
42 |
audio_array, sampling_rate = librosa.load(audio_file, sr=16000)
|
43 |
+
|
44 |
+
# Process the audio array
|
45 |
+
input_features = processor(audio_array, sampling_rate=sampling_rate, return_tensors="pt").input_features
|
46 |
+
|
47 |
+
# Generate token ids
|
48 |
+
predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids, return_timestamps=True)
|
49 |
+
|
50 |
+
# Decode token ids to text
|
51 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
52 |
+
|
53 |
# Print the transcription
|
|
|
54 |
print(transcription[0]) # Display the transcriptiontry:
|
55 |
+
|
56 |
return {"transcription": transcription[0]}
|
57 |
except Exception as e:
|
58 |
+
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|