Spaces:
Sleeping
Sleeping
Commit
·
eae5b83
1
Parent(s):
327ec66
tiny model
Browse files- app.py +19 -41
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,26 +1,21 @@
|
|
1 |
|
2 |
from fastapi import FastAPI, Request, HTTPException
|
3 |
-
import
|
4 |
-
import torchaudio
|
5 |
-
from transformers import AutoProcessor, pipeline
|
6 |
import io
|
7 |
-
|
8 |
-
# from optimum.onnxruntime import ORTModelForSpeechSeq2Seq
|
9 |
-
import numpy as np
|
10 |
-
import uvicorn
|
11 |
-
import time
|
12 |
-
app = FastAPI()
|
13 |
from transformers import WhisperForConditionalGeneration, WhisperProcessor
|
14 |
|
|
|
15 |
# Device configuration
|
16 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
-
print(device)
|
18 |
# Load the model and processor
|
19 |
-
model_id = "
|
20 |
model = WhisperForConditionalGeneration.from_pretrained(
|
21 |
model_id
|
22 |
)
|
23 |
-
|
|
|
|
|
|
|
24 |
|
25 |
|
26 |
pipe = pipeline(
|
@@ -40,38 +35,21 @@ async def transcribe_audio(request: Request):
|
|
40 |
audio_file = io.BytesIO(audio_data)
|
41 |
|
42 |
# Load the audio file using pydub
|
43 |
-
|
44 |
-
audio_segment = AudioSegment.from_file(audio_file, format="wav")
|
45 |
-
except Exception as e:
|
46 |
-
raise HTTPException(status_code=400, detail=f"Error loading audio file: {str(e)}")
|
47 |
-
|
48 |
-
# Convert to mono if the audio is stereo (multi-channel)
|
49 |
-
if audio_segment.channels > 1:
|
50 |
-
audio_segment = audio_segment.set_channels(1)
|
51 |
|
52 |
-
#
|
53 |
-
|
54 |
-
if audio_segment.frame_rate != target_sample_rate:
|
55 |
-
audio_segment = audio_segment.set_frame_rate(target_sample_rate)
|
56 |
|
57 |
-
#
|
58 |
-
|
59 |
-
if audio_segment.sample_width == 2:
|
60 |
-
audio_array = audio_array.astype(np.float32) / 32768.0
|
61 |
-
else:
|
62 |
-
raise HTTPException(status_code=400, detail="Unsupported sample width")
|
63 |
-
start_time = time.time()
|
64 |
-
# Convert to the format expected by the model
|
65 |
-
inputs = processor(audio_array, sampling_rate=target_sample_rate, return_tensors="pt")
|
66 |
-
inputs = inputs.to(device)
|
67 |
|
68 |
-
#
|
69 |
-
|
70 |
-
# Calculate time taken
|
71 |
-
time_taken = time.time() - start_time
|
72 |
-
transcription = result["text"]
|
73 |
|
74 |
-
|
|
|
|
|
|
|
75 |
except Exception as e:
|
76 |
raise HTTPException(status_code=500, detail=str(e))
|
77 |
|
|
|
1 |
|
2 |
from fastapi import FastAPI, Request, HTTPException
|
3 |
+
from transformers import pipeline
|
|
|
|
|
4 |
import io
|
5 |
+
import librosa
|
|
|
|
|
|
|
|
|
|
|
6 |
from transformers import WhisperForConditionalGeneration, WhisperProcessor
|
7 |
|
8 |
+
app = FastAPI()
|
9 |
# Device configuration
|
|
|
|
|
10 |
# Load the model and processor
|
11 |
+
model_id = "WajeehAzeemX/whisper-tiny-ar-tashkeel"
|
12 |
model = WhisperForConditionalGeneration.from_pretrained(
|
13 |
model_id
|
14 |
)
|
15 |
+
|
16 |
+
processor = WhisperProcessor.from_pretrained('openai/whisper-tiny')
|
17 |
+
model.config.forced_decoder_ids = None
|
18 |
+
forced_decoder_ids = processor.get_decoder_prompt_ids(language="arabic", task="transcribe")
|
19 |
|
20 |
|
21 |
pipe = pipeline(
|
|
|
35 |
audio_file = io.BytesIO(audio_data)
|
36 |
|
37 |
# Load the audio file using pydub
|
38 |
+
audio_array, sampling_rate = librosa.load(audio_file, sr=16000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
# Process the audio array
|
41 |
+
input_features = processor(audio_array, sampling_rate=sampling_rate, return_tensors="pt").input_features
|
|
|
|
|
42 |
|
43 |
+
# Generate token ids
|
44 |
+
predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
# Decode token ids to text
|
47 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
|
|
|
|
|
|
48 |
|
49 |
+
# Print the transcription
|
50 |
+
print(transcription[0]) # Display the transcriptiontry:
|
51 |
+
|
52 |
+
return {"transcription": transcription[0]}
|
53 |
except Exception as e:
|
54 |
raise HTTPException(status_code=500, detail=str(e))
|
55 |
|
requirements.txt
CHANGED
@@ -10,4 +10,5 @@ numpy
|
|
10 |
onnx
|
11 |
optimum
|
12 |
onnxruntime
|
13 |
-
faster_whisper
|
|
|
|
10 |
onnx
|
11 |
optimum
|
12 |
onnxruntime
|
13 |
+
faster_whisper
|
14 |
+
librosa
|