Walid-Ahmed commited on
Commit
494ed90
·
verified ·
1 Parent(s): f0e6a9f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -1
README.md CHANGED
@@ -11,4 +11,101 @@ license: apache-2.0
11
  short_description: language_detector
12
  ---
13
 
14
- This is my project
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  short_description: language_detector
12
  ---
13
 
14
+ # Language Detection with Gradio
15
+
16
+ This repository contains a simple language detection application built with [Gradio](https://gradio.app/) and [Transformers](https://huggingface.co/transformers/). The application leverages a pre-trained language detection model to identify the language of a given text input. The user interface is created using Gradio, making it easy to run and share as a web app.
17
+
18
+ ## Features
19
+
20
+ - **Language Detection:** Enter text in any language and the model will output the detected language.
21
+ - **Interactive UI:** A Gradio interface provides an easy-to-use web interface for testing and demos.
22
+ - **Examples:** Predefined examples in multiple languages (English, French, Spanish, Arabic) are provided for quick testing.
23
+
24
+ ## Code Overview
25
+
26
+ The main script performs the following tasks:
27
+
28
+ 1. **Importing Libraries:**
29
+ - Imports `gradio` for building the web interface.
30
+ - Imports `pipeline` from `transformers` to load the pre-trained language detection model.
31
+
32
+ 2. **Defining the Language Detection Function:**
33
+ - `detect_language(text)`: This function takes a text string as input, processes it through the language detection model, and returns the detected language label.
34
+ - **Note:** Ensure that the variable `language_detector` is properly initialized with a language detection pipeline (e.g., using `pipeline("text-classification", model="your-model-name")`). This snippet assumes that `language_detector` is already defined elsewhere or should be added before using the function.
35
+
36
+ 3. **Setting Up Examples:**
37
+ - A list of example inputs in English, French, Spanish, and Arabic to demonstrate the functionality.
38
+
39
+ 4. **Creating the Gradio Interface:**
40
+ - An instance of `gr.Interface` is created with the function `detect_language`, input and output components, title, description, and examples.
41
+ - The interface is then launched with `iface.launch()`.
42
+
43
+ ## Installation
44
+
45
+ 1. **Clone the Repository:**
46
+
47
+ ```bash
48
+ git clone https://github.com/yourusername/language-detection-app.git
49
+ cd language-detection-app
50
+ ```
51
+
52
+ 2. **Set Up a Virtual Environment (Optional but Recommended):**
53
+
54
+ ```bash
55
+ python -m venv venv
56
+ source venv/bin/activate # On Windows: venv\Scripts\activate
57
+ ```
58
+
59
+ 3. **Install the Required Dependencies:**
60
+
61
+ ```bash
62
+ pip install gradio transformers
63
+ ```
64
+
65
+ 4. **Initialize the Language Detector:**
66
+
67
+ Before running the code, ensure that the `language_detector` pipeline is initialized. For example, you might add the following code at the top of your script:
68
+
69
+ ```python
70
+ from transformers import pipeline
71
+
72
+ language_detector = pipeline("text-classification", model="papluca/xlm-roberta-base-language-detection")
73
+ ```
74
+
75
+ Replace `"papluca/xlm-roberta-base-language-detection"` with the model of your choice if needed.
76
+
77
+ ## Usage
78
+
79
+ 1. **Run the Application:**
80
+
81
+ ```bash
82
+ python your_script_name.py
83
+ ```
84
+
85
+ 2. **Access the Gradio Interface:**
86
+
87
+ Once the script is running, a local URL (e.g., http://127.0.0.1:7860) will be displayed in your terminal. Open this URL in your web browser to interact with the language detection application.
88
+
89
+ 3. **Test the Application:**
90
+
91
+ - Type or paste text into the input textbox.
92
+ - Click the "Submit" button to see the detected language.
93
+ - You can also use the provided examples to test the functionality.
94
+
95
+ ## Customization
96
+
97
+ - **Model Choice:** You can swap out the language detection model by changing the model parameter in the `pipeline` initialization.
98
+ - **Interface Customization:** Modify the Gradio interface parameters (e.g., title, description, input/output types) to better suit your needs.
99
+ - **Deployment:** The Gradio app can be easily shared or deployed using services like [Hugging Face Spaces](https://huggingface.co/spaces).
100
+
101
+ ## Contributing
102
+
103
+ Contributions are welcome! Feel free to open issues or submit pull requests to enhance the functionality of this project.
104
+
105
+ ## License
106
+
107
+ This project is licensed under the [MIT License](LICENSE).
108
+
109
+ ---
110
+
111
+ Enjoy building and sharing your language detection app!