Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,48 @@
|
|
1 |
|
2 |
|
3 |
-
|
4 |
-
import gradio as gr
|
5 |
import whisper
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
-
print("Running on GPU")
|
15 |
-
else:
|
16 |
-
print("Running on CPU")
|
17 |
-
|
18 |
-
whisper_model = whisper.load_model("tiny", device=device)
|
19 |
-
#model = whisper.load_model("base")
|
20 |
|
|
|
|
|
21 |
|
22 |
-
# Load the
|
23 |
-
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
-
|
28 |
-
transcription_result = whisper_model.transcribe(audio)
|
29 |
-
transcription = transcription_result['text']
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
summary_text = summary[0]['summary_text']
|
34 |
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
# Define the
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
)
|
45 |
|
46 |
-
# Launch the Gradio
|
47 |
-
|
|
|
1 |
|
2 |
|
|
|
|
|
3 |
import whisper
|
4 |
+
import gradio as gr
|
5 |
+
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
|
6 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
|
|
7 |
|
8 |
+
# Initialize the device map for ZeRO
|
9 |
+
from accelerate.utils import set_module_tensor_to_device
|
10 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
device_map = "auto" # Automatically allocate layers across available GPUs/CPUs
|
13 |
+
print(f"Using ZeRO-powered device map: {device_map}")
|
14 |
|
15 |
+
# Load the model using ZeRO
|
16 |
+
model_name = "openai/whisper-tiny"
|
17 |
|
18 |
+
# Load the Whisper model into ZeRO's memory-efficient mode
|
19 |
+
with init_empty_weights():
|
20 |
+
whisper_model = whisper.load_model(model_name)
|
|
|
|
|
21 |
|
22 |
+
# Load tokenizer
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
24 |
|
25 |
+
# Load model with Accelerate/ZeRO
|
26 |
+
whisper_model = load_checkpoint_and_dispatch(
|
27 |
+
whisper_model,
|
28 |
+
device_map=device_map,
|
29 |
+
dtype=torch.float16 # Optional: Use mixed precision for further optimization
|
30 |
+
)
|
31 |
|
32 |
+
# Define the transcription function
|
33 |
+
def transcribe(audio):
|
34 |
+
# Perform transcription using the Whisper model
|
35 |
+
result = whisper_model.transcribe(audio)
|
36 |
+
return result['text']
|
37 |
+
|
38 |
+
# Create the Gradio interface
|
39 |
+
demo = gr.Interface(
|
40 |
+
fn=transcribe, # The function to be called for transcription
|
41 |
+
inputs=gr.Audio(source="microphone", type="filepath", label="Speak into the microphone"), # Input audio
|
42 |
+
outputs=gr.Textbox(label="Transcription"), # Output transcription
|
43 |
+
title="Whisper Speech-to-Text with ZeRO", # Title of the interface
|
44 |
+
description="Record audio using your microphone and get a transcription using the Whisper model optimized by ZeRO."
|
45 |
)
|
46 |
|
47 |
+
# Launch the Gradio interface
|
48 |
+
demo.launch()
|