import gradio as gr from fastai.vision.all import * import skimage def is_cat(x): return x[0].isupper() learn = load_learner('model.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Pet Classifier" description = "A test with happy and sad dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces." article="

Blog post

" gr.Interface( fn=predict, inputs=gr.components.Image(), outputs=gr.components.Label(num_top_classes=2), title=title, description=description, article=article, ).launch()