Spaces:
Sleeping
Sleeping
File size: 8,889 Bytes
34a7c74 fd8702d 34a7c74 675d710 2cc8917 34a7c74 fd8702d 2cc8917 fd8702d eeedb7b 34a7c74 80921a1 34a7c74 80921a1 fd8702d 2cc8917 fd8702d 6658aa7 eeedb7b af782b7 34a7c74 fd8702d 2cc8917 675d710 fd8702d eeedb7b 2cc8917 fd8702d eeedb7b fd8702d 675d710 2cc8917 675d710 2cc8917 675d710 2cc8917 675d710 2cc8917 675d710 2cc8917 675d710 2cc8917 675d710 2cc8917 675d710 2cc8917 675d710 2cc8917 675d710 2cc8917 eeedb7b 2cc8917 675d710 2cc8917 675d710 2cc8917 675d710 fd8702d 2cc8917 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import os
import faiss
import gradio as gr
from helpers import *
import shutil
from PIL import Image
import sqlite3
import pathlib
conn = sqlite3.connect('database.db', check_same_thread=False)
c = conn.cursor()
create(c)
detector = load_detector()
model = load_model()
# source_imgs = []
# for r, _, f in os.walk(os.getcwd() + "/images"):
# for file in f:
# if (
# (".jpg" in file.lower())
# or (".jpeg" in file.lower())
# or (".png" in file.lower())
# ):
# exact_path = r + "/" + file
# source_imgs.append(exact_path)
# source_faces = []
# for img in source_imgs:
# try:
# faces, id = extract_faces(detector, img)
# source_faces.append(faces[id])
# # source_faces.append(Image.open(img))
# except Exception as e:
# print(f"Skipping {img}, {e}")
# source_embeddings = get_embeddings(model, source_faces)
def init():
source_imgs = c.execute("SELECT image FROM students").fetchall()
cwd = os.getcwd()
source_imgs = [os.path.join(cwd, "images", s[0]) for s in source_imgs]
source_faces = [Image.open(s) for s in source_imgs]
# source_embeddings = get_embeddings(model, source_faces)
source_embeddings = c.execute("SELECT embeddings FROM students").fetchall()
source_embeddings = [os.path.join(cwd, "embeds", s[0]) for s in source_embeddings]
source_embeddings = [np.load(s) for s in source_embeddings]
names = c.execute("SELECT name FROM students").fetchall()
names = [n[0] for n in names]
return names, source_faces, source_embeddings
def init():
source_imgs = c.execute("SELECT image FROM students").fetchall()
cwd = os.getcwd()
source_imgs = [os.path.join(cwd, "images", s[0]) for s in source_imgs]
source_faces = [Image.open(s) for s in source_imgs]
# source_embeddings = get_embeddings(model, source_faces)
source_embeddings = c.execute("SELECT embeddings FROM students").fetchall()
source_embeddings = [os.path.join(cwd, "embeds", s[0]) for s in source_embeddings]
source_embeddings = [np.load(s) for s in source_embeddings]
names = c.execute("SELECT name FROM students").fetchall()
names = [n[0] for n in names]
return names, source_faces, source_embeddings
def find_names(image, minSize, minConf):
imgs, _ = extract_faces(detector, image)
ims = []
for i, face in enumerate(imgs):
if((face.size[0] * face.size[1]) > minSize):
ims.append(face)
imgs = ims
embeds = get_embeddings(model, imgs)
d = np.zeros((len(source_embeddings), len(embeds)))
for i, s in enumerate(source_embeddings):
for j, t in enumerate(embeds):
d[i][j] = findCosineDistance(s.squeeze(), t)
ids = np.argmin(d, axis = 0)
names = []
for j, i in enumerate(ids):
if 1 - d[i][j] > minConf:
names.append(source_imgs[i].split("/")[-1].split(".")[0])
else:
names.append("Unknown")
recognition(imgs, ids, names, source_faces, d, source_imgs)
return ",".join(names), "Recognition.jpg"
source_imgs, source_faces, source_embeddings = init()
detect = gr.Interface(
find_names,
[gr.Image(type="filepath", label="Class Photo"), gr.Number(label = "Minimum Size"), gr.Number(label = "Minimum Confidence")],
[gr.Textbox(label = "Roll No") ,gr.Image(type = "filepath", label="Matching")],
examples = [
[os.path.join(os.path.dirname(__file__), "examples/group1.jpg"), 1000, 0.3],
[os.path.join(os.path.dirname(__file__), "examples/group2.jpg"), 1000, 0.3]
]
)
def upload_files(files):
global i, imgs
if not os.path.exists(os.path.join(os.getcwd(), "temp")):
os.mkdir(os.path.join(os.getcwd(), "temp"))
for file in files:
# faces, id = extract_faces(detector, os.path.join(os.getcwd(), "temp", file))
# imgs.append(faces)
shutil.move(file.name, os.path.join(os.getcwd(), "temp", file.name.split('\\')[-1]))
return None, "Uploaded!"
def load_image():
global i, imgs
images = os.listdir(os.path.join(os.getcwd(), "temp"))
imgs = []
for image in images:
faces, id = extract_faces(detector, os.path.join(os.getcwd(), "temp", image))
# imgs.append(Image.open(os.path.join(os.getcwd(), "temp", image)))
imgs.append(faces)
i+=1
shutil.rmtree(os.path.join(os.getcwd(), "temp"))
return imgs[i], "Loaded!", None, None
def save_img(label, email, roll, selected):
global i, imgs, source_imgs, source_faces, source_embeddings
if label:
imgs[i][int(selected)].save(os.path.join(os.getcwd(), "images", f"{roll}.jpg"))
np.save(os.path.join(os.getcwd(), "embeds", f"{roll}.npy"),get_embeddings(model, [imgs[i][int(selected)]]))
insert(c, label, email, roll, f"{roll}.jpg", f"{roll}.npy")
conn.commit()
source_imgs, source_faces, source_embeddings = init()
imgs[i].pop(int(selected))
if(len(imgs[i]) == 0):
i+=1
if i < len(imgs):
if not label:
return imgs[i], None, None, None
return imgs[i], "Saved!", None, None
else:
clear()
return None, "Finished!", None, None
def clear():
global i, imgs
i = 0
imgs = None
# shutil.rmtree(os.path.join(os.getcwd(), "temp"))
return None, None, None, None
i = -1
imgs = None
with gr.Blocks() as upload:
gr.Markdown("# Select Images to Upload and click Upload")
with gr.Row():
files = gr.Files(file_types=[".jpg", ".jpeg", ".png"], label="Upload images")
# input = gr.Image(type="filepath")
alert = gr.Textbox()
upload_btn = gr.Button(value="Upload")
upload_btn.click(upload_files, inputs=[files], outputs=[files, alert])
with gr.Accordion("Annotate", open=False):
with gr.Row():
with gr.Column():
input = gr.Textbox(label = "Name")
email = gr.Textbox(label = "Email")
roll = gr.Textbox(label = "Roll No")
selected = gr.Number(visible=False)
def get_select_index(evt: gr.SelectData):
return evt.index
output = gr.Gallery(label="Found Faces", height = 400)
output.select(get_select_index, None, selected)
with gr.Row():
next_btn = gr.Button(value="Next")
next_btn.click(load_image, inputs=[], outputs=[output, input, email, roll])
save_btn = gr.Button(value="Save")
save_btn.click(save_img, inputs=[input, email, roll, selected], outputs=[output, input, email, roll])
clear_btn = gr.Button(value="Clear")
clear_btn.click(clear, inputs=[], outputs=[output, input, email, roll])
# with gr.Blocks() as annotate:
def match(name, roll):
if roll:
results = c.execute(f"SELECT name, roll_no, image from students WHERE roll_no = {roll}").fetchall()
elif name:
results = c.execute(f'SELECT name, roll_no, image from students WHERE name = "{name}"').fetchall()
else:
results = c.execute(f"SELECT name, roll_no, image from students").fetchall()
names = []
rolls = []
images = []
cwd = os.getcwd()
for r in results:
names.append(r[0])
rolls.append(r[1])
images.append(os.path.join(cwd, "images", r[2]))
return names, rolls, images, images
def update(name, roll, rolls, img, selected):
global source_imgs, source_faces, source_embeddings
c.execute(f'UPDATE students SET name = "{name}", roll_no = {roll} where roll_no = {rolls[int(selected)]}')
conn.commit()
source_imgs, source_faces, source_embeddings = init()
result = c.execute("SELECT name, roll_no from students").fetchall()
names = [r[0] for r in result]
rolls = [r[1] for r in result]
return None, None, img, img, names, rolls
with gr.Blocks() as find:
with gr.Row():
with gr.Column():
name = gr.Textbox(label = "Name")
roll = gr.Textbox(label = "Roll No")
image = gr.Gallery(label = "Matches", height = 400)
with gr.Row():
names = gr.State()
rolls = gr.State()
images = gr.State()
selected = gr.Number(visible=False)
find_btn = gr.Button(value = "Find")
find_btn.click(match, inputs = [name, roll], outputs = [names, rolls, image, images])
update_btn = gr.Button(value = "Update")
update_btn.click(update, inputs = [name, roll, rolls, images, selected], outputs = [name, roll, image, images, names, rolls])
clear_btn = gr.ClearButton([name, roll, image])
def get_select_index(evt: gr.SelectData, names, rolls):
return names[evt.index], rolls[evt.index], evt.index
image.select(get_select_index, [names, rolls], [name, roll, selected])
tabbed_interface = gr.TabbedInterface(
[detect, upload, find],
["Attendance", "Register", "Find"],
)
if __name__ == "__main__":
tabbed_interface.launch() |