Spaces:
Build error
Build error
File size: 13,535 Bytes
c9cd3be 160f4d3 c9cd3be 160f4d3 c9cd3be 160f4d3 c9cd3be f50c1ac c9cd3be 6686e5d c9cd3be 1888bc8 c9cd3be f50c1ac c9cd3be f50c1ac c9cd3be f50c1ac c9cd3be f50c1ac c9cd3be f50c1ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
import random
import shutil
import uuid
from pathlib import Path
import cv2
import gradio as gr
import mediapy
import mlflow.pytorch
import numpy as np
import torch
from skimage import img_as_ubyte
from models.ddim import DDIMSampler
import nibabel as nib
ffmpeg_path = shutil.which("ffmpeg")
mediapy.set_ffmpeg(ffmpeg_path)
# Loading model
device = torch.device("cpu")
vqvae = mlflow.pytorch.load_model(
"./trained_models/vae/",
map_location=device,
)
vqvae.eval()
diffusion = mlflow.pytorch.load_model(
"./trained_models/ddpm/",
map_location=device,
)
diffusion.eval()
diffusion = diffusion.to(device)
vqvae = vqvae.to(device)
def sample_fn(
gender_radio,
age_slider,
ventricular_slider,
brain_slider,
):
print("Sampling brain!")
print(f"Gender: {gender_radio}")
print(f"Age: {age_slider}")
print(f"Ventricular volume: {ventricular_slider}")
print(f"Brain volume: {brain_slider}")
age_slider = (age_slider - 44) / (82 - 44)
cond = torch.Tensor([[gender_radio, age_slider, ventricular_slider, brain_slider]])
latent_shape = [1, 3, 20, 28, 20]
cond_crossatten = cond.unsqueeze(1)
cond_concat = cond.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
cond_concat = cond_concat.expand(list(cond.shape[0:2]) + list(latent_shape[2:]))
conditioning = {
"c_concat": [cond_concat.float().to(device)],
"c_crossattn": [cond_crossatten.float().to(device)],
}
ddim = DDIMSampler(diffusion)
num_timesteps = 50
latent_vectors, _ = ddim.sample(
num_timesteps,
conditioning=conditioning,
batch_size=1,
shape=list(latent_shape[1:]),
eta=1.0,
)
with torch.no_grad():
x_hat = vqvae.reconstruct_ldm_outputs(latent_vectors).cpu()
return x_hat.numpy()
def sample_with_text_fn(text_prompt):
# Not implemented
pass
def create_videos_and_file(
gender_radio,
age_slider,
ventricular_slider,
brain_slider,
):
output_dir = Path(
f"./outputs/{str(uuid.uuid4())}"
)
output_dir.mkdir(exist_ok=True)
image_data = sample_fn(
gender_radio,
age_slider,
ventricular_slider,
brain_slider,
)
image_data = image_data[0, 0, 5:-5, 5:-5, :-15]
image_data = (image_data - image_data.min()) / (image_data.max() - image_data.min())
image_data = (image_data * 255).astype(np.uint8)
# Write frames to video
with mediapy.VideoWriter(
f"{str(output_dir)}/brain_axial.mp4", shape=(150, 214), fps=12, crf=18
) as w:
for idx in range(image_data.shape[2]):
img = image_data[:, :, idx]
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
frame = img_as_ubyte(img)
w.add_image(frame)
with mediapy.VideoWriter(
f"{str(output_dir)}/brain_sagittal.mp4", shape=(145, 214), fps=12, crf=18
) as w:
for idx in range(image_data.shape[0]):
img = np.rot90(image_data[idx, :, :])
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
frame = img_as_ubyte(img)
w.add_image(frame)
with mediapy.VideoWriter(
f"{str(output_dir)}/brain_coronal.mp4", shape=(145, 150), fps=12, crf=18
) as w:
for idx in range(image_data.shape[1]):
img = np.rot90(np.flip(image_data, axis=1)[:, idx, :])
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
frame = img_as_ubyte(img)
w.add_image(frame)
# Create file
affine = np.array(
[
[-1.0, 0.0, 0.0, 96.48149872],
[0.0, 1.0, 0.0, -141.47715759],
[0.0, 0.0, 1.0, -156.55375671],
[0.0, 0.0, 0.0, 1.0],
]
)
empty_header = nib.Nifti1Header()
sample_nii = nib.Nifti1Image(image_data, affine, empty_header)
nib.save(sample_nii, f"{str(output_dir)}/my_brain.nii.gz")
# time.sleep(2)
return (
f"{str(output_dir)}/brain_axial.mp4",
f"{str(output_dir)}/brain_sagittal.mp4",
f"{str(output_dir)}/brain_coronal.mp4",
f"{str(output_dir)}/my_brain.nii.gz",
)
def randomise():
random_age = round(random.uniform(44.0, 82.0), 2)
return (
random.choice(["Female", "Male"]),
random_age,
round(random.uniform(0, 1.0), 2),
round(random.uniform(0, 1.0), 2),
)
def unrest_randomise():
random_age = round(random.uniform(18.0, 100.0), 2)
return (
random.choice([1, 0]),
random_age,
round(random.uniform(-1.0, 2.0), 2),
round(random.uniform(-1.0, 2.0), 2),
)
# TEXT
title = "Generating Brain Imaging with Diffusion Models"
description = """
<center><a href="https://arxiv.org/abs/2209.07162">[PAPER]</a> <a href="https://academictorrents.com/details/63aeb864bbe2115ded0aa0d7d36334c026f0660b">[DATASET]</a></center>
<details>
<summary><b>Instructions</b></summary>
<p style="margin-top: -3px;">With this app, you can generate synthetic brain images with one click!<br />You have several ways to set how your generated brain will look like:<br /></p>
<ul style="margin-top: -20px;margin-bottom: -15px;">
<li style="margin-bottom: -10px;margin-left: 20px;">Use the "<i>Inputs</i>" tab to create well-behaved brains using the same value ranges that our <br />models learned as described in paper linked above</li>
<li style="margin-left: 20px;">Use the "<i>Unrestricted Inputs</i>" tab to generate the wildest brains!</li>
<li style="margin-left: 20px;">Use the "<i>Text prompt</i>" tab to generate brains based on text descriptions (Coming soon).</li>
</ul>
<p>After customisation, just hit "<i>Generate</i>" and wait a few seconds.<br />The generated brain will also be available for download, and you can use your favourite Nifti Viewer to check it.<br />Note: if are having problems with the videos, try our app using chrome. <b>Enjoy!<b><p>
</details>
"""
article = """
Checkout our dataset with [100K synthetic brain](https://academictorrents.com/details/63aeb864bbe2115ded0aa0d7d36334c026f0660b)! 🧠🧠🧠
App made by [Walter Hugo Lopez Pinaya](https://twitter.com/warvito) from [AMIGO](https://amigos.ai/)
<center><img src="https://raw.githubusercontent.com/Warvito/public_images/master/assets/Footer_1.png" alt="Project by amigos.ai" style="width:450px;"></center>
<center><img src="https://raw.githubusercontent.com/Warvito/public_images/master/assets/Footer_2.png" alt="Acknowledgements" style="width:750px;"></center>
"""
demo = gr.Blocks()
with demo:
gr.Markdown(
"<h1 style='text-align: center; margin-bottom: 1rem'>" + title + "</h1>"
)
gr.Markdown(description)
with gr.Row():
with gr.Column():
with gr.Box():
with gr.Tabs():
with gr.TabItem("Inputs"):
with gr.Row():
gender_radio = gr.Radio(
choices=["Female", "Male"],
value="Female",
type="index",
label="Gender",
interactive=True,
)
age_slider = gr.Slider(
minimum=44,
maximum=82,
value=63,
label="Age [years]",
interactive=True,
)
with gr.Row():
ventricular_slider = gr.Slider(
minimum=0,
maximum=1,
value=0.5,
label="Volume of ventricular cerebrospinal fluid",
interactive=True,
)
brain_slider = gr.Slider(
minimum=0,
maximum=1,
value=0.5,
label="Volume of brain",
interactive=True,
)
with gr.Row():
submit_btn = gr.Button("Generate", variant="primary")
randomize_btn = gr.Button("I'm Feeling Lucky")
with gr.TabItem("Unrestricted Inputs"):
with gr.Row():
unrest_gender_number = gr.Number(
value=1.0,
precision=1,
label="Gender [Female=0, Male=1]",
interactive=True,
)
unrest_age_number = gr.Number(
value=63,
precision=1,
label="Age [years]",
interactive=True,
)
with gr.Row():
unrest_ventricular_number = gr.Number(
value=0.5,
precision=2,
label="Volume of ventricular cerebrospinal fluid",
interactive=True,
)
unrest_brain_number = gr.Number(
value=0.5,
precision=2,
label="Volume of brain",
interactive=True,
)
with gr.Row():
unrest_submit_btn = gr.Button("Generate", variant="primary")
unrest_randomize_btn = gr.Button("I'm Feeling Lucky")
gr.Examples(
examples=[
[1, 63, 1.3, 0.5],
[0, 63, 1.9, 0.5],
[1, 63, -0.5, 0.5],
[0, 63, 0.5, -0.3],
],
inputs=[
unrest_gender_number,
unrest_age_number,
unrest_ventricular_number,
unrest_brain_number,
],
)
with gr.TabItem("Text prompt"):
text_prompt = gr.Textbox("Coming soon... Follow me on twitter to get latest updates.", show_label=False, interactive=False)
submit_text_btn = gr.Button("Generate", variant="primary", )
gr.Examples(
examples=[
["32 years old | Normal appearance brain"],
["T2 weighted | Male | 50 years old | There are a few T2 hyperintensities in the deep white matter of the frontal lobes"],
["Minor small vessel change"],
["T1 weighted | There is a mild to moderate arachnoid cyst within the anterior left middle cranial fossa"],
],
inputs=[
text_prompt
],
)
with gr.Column():
with gr.Box():
with gr.Tabs():
with gr.TabItem("Axial View"):
axial_sample_plot = gr.Video(show_label=False)
with gr.TabItem("Sagittal View"):
sagittal_sample_plot = gr.Video(show_label=False)
with gr.TabItem("Coronal View"):
coronal_sample_plot = gr.Video(show_label=False)
sample_file = gr.File(label="My Brain")
gr.Markdown(article)
submit_btn.click(
create_videos_and_file,
[
gender_radio,
age_slider,
ventricular_slider,
brain_slider,
],
[axial_sample_plot, sagittal_sample_plot, coronal_sample_plot, sample_file],
# [axial_sample_plot, sagittal_sample_plot, coronal_sample_plot],
)
unrest_submit_btn.click(
create_videos_and_file,
[
unrest_gender_number,
unrest_age_number,
unrest_ventricular_number,
unrest_brain_number,
],
[axial_sample_plot, sagittal_sample_plot, coronal_sample_plot, sample_file],
# [axial_sample_plot, sagittal_sample_plot, coronal_sample_plot],
)
randomize_btn.click(
fn=randomise,
inputs=[],
queue=False,
outputs=[gender_radio, age_slider, ventricular_slider, brain_slider],
)
unrest_randomize_btn.click(
fn=unrest_randomise,
inputs=[],
queue=False,
outputs=[
unrest_gender_number,
unrest_age_number,
unrest_ventricular_number,
unrest_brain_number,
],
)
# submit_text_btn.click(
# fn=sample_with_text_fn,
# inputs=[text_prompt],
# outputs=[axial_sample_plot, sagittal_sample_plot, coronal_sample_plot],
# )
# demo.launch(share=True, enable_queue=True)
# demo.launch(enable_queue=True)
demo.queue()
demo.launch()
|