Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
from
|
2 |
-
from
|
3 |
-
from
|
4 |
-
from
|
5 |
import streamlit as st
|
6 |
import os
|
7 |
from dotenv import load_dotenv
|
@@ -13,29 +13,30 @@ load_dotenv()
|
|
13 |
os.environ["LANGCHAIN_TRACING_V2"] = "true"
|
14 |
os.environ["LANGCHAIN_API_KEY"] = os.getenv("LANGCHAIN_API_KEY")
|
15 |
|
|
|
|
|
|
|
16 |
# Prompt Template
|
17 |
prompt = ChatPromptTemplate.from_messages(
|
18 |
[
|
19 |
-
("system", "You are a helpful assistant. Please respond to the user queries"),
|
20 |
("user", "Question: {question}")
|
21 |
]
|
22 |
)
|
23 |
|
|
|
|
|
|
|
24 |
# Streamlit app setup
|
25 |
-
st.title('Langchain Demo
|
26 |
|
27 |
# User input
|
28 |
input_text = st.text_input("Search the topic you want")
|
29 |
|
30 |
-
# Ollama LLM (ensure the model is available, or access it through Hugging Face API)
|
31 |
-
llm = Ollama(model="llama2")
|
32 |
-
output_parser = StrOutputParser()
|
33 |
-
chain = prompt | llm | output_parser
|
34 |
-
|
35 |
# Display result when user inputs text
|
36 |
if input_text:
|
37 |
try:
|
38 |
-
response = chain.
|
39 |
st.write(response)
|
40 |
except Exception as e:
|
41 |
st.error(f"Error: {e}")
|
|
|
1 |
+
from langchain import LLMChain
|
2 |
+
from langchain.chat_models import ChatOpenAI
|
3 |
+
from langchain.prompts import ChatPromptTemplate
|
4 |
+
from langchain.output_parsers import StrOutputParser
|
5 |
import streamlit as st
|
6 |
import os
|
7 |
from dotenv import load_dotenv
|
|
|
13 |
os.environ["LANGCHAIN_TRACING_V2"] = "true"
|
14 |
os.environ["LANGCHAIN_API_KEY"] = os.getenv("LANGCHAIN_API_KEY")
|
15 |
|
16 |
+
# Initialize the LLM (e.g., using OpenAI or Hugging Face)
|
17 |
+
llm = ChatOpenAI(model_name="gpt-3.5-turbo", openai_api_key=os.getenv("OPENAI_API_KEY"))
|
18 |
+
|
19 |
# Prompt Template
|
20 |
prompt = ChatPromptTemplate.from_messages(
|
21 |
[
|
22 |
+
("system", "You are a helpful assistant. Please respond to the user queries."),
|
23 |
("user", "Question: {question}")
|
24 |
]
|
25 |
)
|
26 |
|
27 |
+
# Create LLM Chain
|
28 |
+
chain = LLMChain(llm=llm, prompt=prompt, output_key="response")
|
29 |
+
|
30 |
# Streamlit app setup
|
31 |
+
st.title('Langchain Demo with Hugging Face API')
|
32 |
|
33 |
# User input
|
34 |
input_text = st.text_input("Search the topic you want")
|
35 |
|
|
|
|
|
|
|
|
|
|
|
36 |
# Display result when user inputs text
|
37 |
if input_text:
|
38 |
try:
|
39 |
+
response = chain.run({"question": input_text})
|
40 |
st.write(response)
|
41 |
except Exception as e:
|
42 |
st.error(f"Error: {e}")
|