Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import whisper
|
7 |
+
from gtts import gTTS
|
8 |
+
from groq import Groq
|
9 |
+
import os
|
10 |
+
import numpy as np
|
11 |
+
import soundfile as sf
|
12 |
+
import logging
|
13 |
+
|
14 |
+
# Initialize the Groq API key
|
15 |
+
GROQ_API_KEY = "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"
|
16 |
+
|
17 |
+
# Configure logging
|
18 |
+
logging.basicConfig(level=logging.DEBUG)
|
19 |
+
|
20 |
+
# Initialize Whisper model (No API key required)
|
21 |
+
try:
|
22 |
+
whisper_model = whisper.load_model("base")
|
23 |
+
logging.info("Whisper model loaded successfully.")
|
24 |
+
except Exception as e:
|
25 |
+
raise RuntimeError(f"Error loading Whisper model: {e}")
|
26 |
+
|
27 |
+
# Initialize Groq client (API key required for Groq API)
|
28 |
+
try:
|
29 |
+
client = Groq(
|
30 |
+
api_key=GROQ_API_KEY # Directly use the API key from the variable
|
31 |
+
)
|
32 |
+
logging.info("Groq client initialized successfully.")
|
33 |
+
except Exception as e:
|
34 |
+
raise RuntimeError(f"Error initializing Groq client: {e}")
|
35 |
+
|
36 |
+
# Function to transcribe audio using Whisper
|
37 |
+
def transcribe_audio(audio):
|
38 |
+
try:
|
39 |
+
# Load audio file with soundfile
|
40 |
+
logging.debug(f"Loading audio file: {audio}")
|
41 |
+
audio_data, sample_rate = sf.read(audio, dtype='float32') # Ensure dtype is float32
|
42 |
+
logging.debug(f"Audio loaded with sample rate: {sample_rate}, data shape: {audio_data.shape}")
|
43 |
+
|
44 |
+
# Whisper expects a specific sample rate
|
45 |
+
if sample_rate != 16000:
|
46 |
+
logging.debug(f"Resampling audio from {sample_rate} to 16000 Hz")
|
47 |
+
# Resample audio data to 16000 Hz
|
48 |
+
num_samples = int(len(audio_data) * (16000 / sample_rate))
|
49 |
+
audio_data_resampled = np.interp(np.linspace(0, len(audio_data), num_samples),
|
50 |
+
np.arange(len(audio_data)),
|
51 |
+
audio_data)
|
52 |
+
audio_data = audio_data_resampled.astype(np.float32) # Ensure dtype is float32
|
53 |
+
sample_rate = 16000
|
54 |
+
|
55 |
+
# Perform the transcription
|
56 |
+
result = whisper_model.transcribe(audio_data)
|
57 |
+
logging.debug(f"Transcription result: {result['text']}")
|
58 |
+
return result['text']
|
59 |
+
except Exception as e:
|
60 |
+
logging.error(f"Error during transcription: {e}")
|
61 |
+
return f"Error during transcription: {e}"
|
62 |
+
|
63 |
+
# Function to get response from LLaMA model using Groq API
|
64 |
+
def get_response(text):
|
65 |
+
try:
|
66 |
+
logging.debug(f"Sending request to Groq API with text: {text}")
|
67 |
+
chat_completion = client.chat.completions.create(
|
68 |
+
messages=[
|
69 |
+
{
|
70 |
+
"role": "user",
|
71 |
+
"content": text, # Using the transcribed text as input
|
72 |
+
}
|
73 |
+
],
|
74 |
+
model="llama3-8b-8192", # Ensure the correct model is used
|
75 |
+
)
|
76 |
+
|
77 |
+
# Extract and return the model's response
|
78 |
+
response_text = chat_completion.choices[0].message.content
|
79 |
+
logging.debug(f"Received response from Groq API: {response_text}")
|
80 |
+
return response_text
|
81 |
+
except Exception as e:
|
82 |
+
logging.error(f"Error during model response generation: {e}")
|
83 |
+
return f"Error during model response generation: {e}"
|
84 |
+
|
85 |
+
# Function to convert text to speech using gTTS
|
86 |
+
def text_to_speech(text):
|
87 |
+
try:
|
88 |
+
tts = gTTS(text)
|
89 |
+
tts.save("response.mp3")
|
90 |
+
logging.debug("Text-to-speech conversion completed successfully.")
|
91 |
+
return "response.mp3"
|
92 |
+
except Exception as e:
|
93 |
+
logging.error(f"Error during text-to-speech conversion: {e}")
|
94 |
+
return f"Error during text-to-speech conversion: {e}"
|
95 |
+
|
96 |
+
# Combined function for Gradio
|
97 |
+
def chatbot(audio):
|
98 |
+
try:
|
99 |
+
# Step 1: Transcribe the audio input using Whisper
|
100 |
+
user_input = transcribe_audio(audio)
|
101 |
+
|
102 |
+
# Check if transcription returned an error
|
103 |
+
if "Error" in user_input:
|
104 |
+
return user_input, None
|
105 |
+
|
106 |
+
logging.debug(f"Transcribed text: {user_input}")
|
107 |
+
|
108 |
+
# Step 2: Get response from the LLaMA model using Groq API
|
109 |
+
response_text = get_response(user_input)
|
110 |
+
|
111 |
+
# Check if the response generation returned an error
|
112 |
+
if "Error" in response_text:
|
113 |
+
return response_text, None
|
114 |
+
|
115 |
+
logging.debug(f"Response text: {response_text}")
|
116 |
+
|
117 |
+
# Step 3: Convert the response text to speech using gTTS
|
118 |
+
response_audio = text_to_speech(response_text)
|
119 |
+
|
120 |
+
# Check if the text-to-speech conversion returned an error
|
121 |
+
if "Error" in response_audio:
|
122 |
+
return response_audio, None
|
123 |
+
|
124 |
+
# Step 4: Return the response text and response audio file
|
125 |
+
return response_text, response_audio
|
126 |
+
|
127 |
+
except Exception as e:
|
128 |
+
logging.error(f"Unexpected error occurred: {e}")
|
129 |
+
return f"Unexpected error occurred: {e}", None
|
130 |
+
|
131 |
+
# Gradio Interface
|
132 |
+
iface = gr.Interface(
|
133 |
+
fn=chatbot,
|
134 |
+
inputs=gr.Audio(type="filepath"),
|
135 |
+
outputs=[gr.Textbox(label="Response Text"), gr.Audio(label="Response Audio")],
|
136 |
+
live=True,
|
137 |
+
title="Voice-to-Voice Chatbot",
|
138 |
+
description="Speak to the bot, and it will respond with voice.",
|
139 |
+
)
|
140 |
+
|
141 |
+
try:
|
142 |
+
iface.launch()
|
143 |
+
except Exception as e:
|
144 |
+
logging.error(f"Error launching Gradio interface: {e}")
|