File size: 2,146 Bytes
69afeb9
 
f52dcd5
36ae953
69afeb9
878a75a
69afeb9
 
 
 
 
 
 
 
878a75a
69afeb9
 
 
f52dcd5
69afeb9
 
 
 
 
 
f52dcd5
69afeb9
f52dcd5
 
 
69afeb9
 
f52dcd5
69afeb9
 
 
878a75a
 
 
 
 
 
 
 
69afeb9
 
f52dcd5
69afeb9
 
 
 
 
f52dcd5
 
 
 
 
 
69afeb9
 
 
 
 
0171304
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import os
import streamlit as st
import fitz  # PyMuPDF
import openai
from dotenv import load_dotenv
from pinecone import Pinecone, ServerlessSpec

# Load the environment variables from the .env file
load_dotenv()
openai_api_key = os.getenv('OPENAI_API_KEY')
pinecone_api_key = os.getenv('PINECONE_API_KEY')
pinecone_environment = os.getenv('PINECONE_ENVIRONMENT')

# Initialize Pinecone
pc = Pinecone(api_key=pinecone_api_key)

# Streamlit app
st.title("Chat with Your Document")
st.write("Upload a PDF file to chat with its content using Pinecone and OpenAI.")

# File upload
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")

if uploaded_file is not None:
    # Load the PDF file
    pdf_document = fitz.open(stream=uploaded_file.read(), filetype="pdf")
    pdf_text = ""
    for page_num in range(pdf_document.page_count):
        page = pdf_document.load_page(page_num)
        pdf_text += page.get_text()

    # Initialize OpenAI embeddings
    openai.api_key = openai_api_key

    # Create a Pinecone vector store
    index_name = "pdf-analysis"
    if index_name not in pc.list_indexes().names():
        pc.create_index(
            name=index_name,
            dimension=512,
            metric='euclidean',
            spec=ServerlessSpec(cloud='aws', region=pinecone_environment)
        )
    vector_store = pc.Index(index_name)

    # Add the PDF text to the vector store
    vector_store.upsert([(str(i), openai.Embedding.create(input=pdf_text)["data"][0]["embedding"]) for i in range(len(pdf_text))])

    # Chat with the document
    user_input = st.text_input("Ask a question about the document:")
    if st.button("Ask"):
        if user_input:
            response = openai.Completion.create(
                engine="davinci",
                prompt=f"Analyze the following text and answer the question: {pdf_text}\n\nQuestion: {user_input}",
                max_tokens=150
            )
            st.write(response.choices[0].text.strip())
        else:
            st.write("Please enter a question to ask.")

    # Display the PDF text
    st.write("Extracted Text from PDF:")
    st.write(pdf_text)
    #