Waseemhassan771 commited on
Commit
33097c4
·
verified ·
1 Parent(s): 3663f54

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -65
app.py DELETED
@@ -1,65 +0,0 @@
1
- import os
2
- import streamlit as st
3
- import fitz # PyMuPDF
4
- import openai
5
- from dotenv import load_dotenv
6
- from pinecone import Pinecone, ServerlessSpec
7
-
8
- # Load the environment variables from the .env file
9
- load_dotenv()
10
- openai_api_key = os.getenv('OPENAI_API_KEY')
11
- pinecone_api_key = os.getenv('PINECONE_API_KEY')
12
- pinecone_environment = os.getenv('PINECONE_ENVIRONMENT')
13
-
14
- # Initialize Pinecone
15
- pc = Pinecone(api_key=pinecone_api_key)
16
-
17
- # Streamlit app
18
- st.title("Chat with Your Document")
19
- st.write("Upload a PDF file to chat with its content using Pinecone and OpenAI.")
20
-
21
- # File upload
22
- uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
23
-
24
- if uploaded_file is not None:
25
- # Load the PDF file
26
- pdf_document = fitz.open(stream=uploaded_file.read(), filetype="pdf")
27
- pdf_text = ""
28
- for page_num in range(pdf_document.page_count):
29
- page = pdf_document.load_page(page_num)
30
- pdf_text += page.get_text()
31
-
32
- # Initialize OpenAI embeddings
33
- openai.api_key = openai_api_key
34
-
35
- # Create a Pinecone vector store
36
- index_name = "pdf-analysis"
37
- if index_name not in pc.list_indexes().names():
38
- pc.create_index(
39
- name=index_name,
40
- dimension=512,
41
- metric='euclidean',
42
- spec=ServerlessSpec(cloud='aws', region=pinecone_environment)
43
- )
44
- vector_store = pc.Index(index_name)
45
-
46
- # Add the PDF text to the vector store
47
- vector_store.upsert([(str(i), openai.Embedding.create(input=pdf_text)["data"][0]["embedding"]) for i in range(len(pdf_text))])
48
-
49
- # Chat with the document
50
- user_input = st.text_input("Ask a question about the document:")
51
- if st.button("Ask"):
52
- if user_input:
53
- response = openai.Completion.create(
54
- engine="davinci",
55
- prompt=f"Analyze the following text and answer the question: {pdf_text}\n\nQuestion: {user_input}",
56
- max_tokens=150
57
- )
58
- st.write(response.choices[0].text.strip())
59
- else:
60
- st.write("Please enter a question to ask.")
61
-
62
- # Display the PDF text
63
- st.write("Extracted Text from PDF:")
64
- st.write(pdf_text)
65
- #