Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import logging
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
import streamlit as st
|
5 |
+
from PyPDF2 import PdfReader
|
6 |
+
from langchain.text_splitter import CharacterTextSplitter
|
7 |
+
# from langchain.embeddings import HuggingFaceInstructEmbeddings
|
8 |
+
from langchain_cohere import CohereEmbeddings
|
9 |
+
from langchain.vectorstores import FAISS
|
10 |
+
from langchain.memory import ConversationBufferMemory
|
11 |
+
from langchain.chains import ConversationalRetrievalChain
|
12 |
+
# from langchain.llms import Ollama
|
13 |
+
from langchain_groq import ChatGroq
|
14 |
+
|
15 |
+
# Load environment variables
|
16 |
+
load_dotenv()
|
17 |
+
|
18 |
+
# Set up logging
|
19 |
+
logging.basicConfig(
|
20 |
+
level=logging.INFO,
|
21 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
22 |
+
)
|
23 |
+
|
24 |
+
# Function to extract text from PDF files
|
25 |
+
def get_pdf_text(pdf_docs):
|
26 |
+
text = ""
|
27 |
+
for pdf in pdf_docs:
|
28 |
+
pdf_reader = PdfReader(pdf)
|
29 |
+
for page in pdf_reader.pages:
|
30 |
+
text += page.extract_text()
|
31 |
+
return text
|
32 |
+
|
33 |
+
# Function to split the extracted text into chunks
|
34 |
+
def get_text_chunks(text):
|
35 |
+
text_splitter = CharacterTextSplitter(
|
36 |
+
separator="\n",
|
37 |
+
chunk_size=1000,
|
38 |
+
chunk_overlap=200,
|
39 |
+
length_function=len
|
40 |
+
)
|
41 |
+
chunks = text_splitter.split_text(text)
|
42 |
+
return chunks
|
43 |
+
|
44 |
+
# Function to create a FAISS vectorstore
|
45 |
+
# def get_vectorstore(text_chunks):
|
46 |
+
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
|
47 |
+
# vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
48 |
+
# return vectorstore
|
49 |
+
|
50 |
+
def get_vectorstore(text_chunks):
|
51 |
+
cohere_api_key = os.getenv("COHERE_API_KEY")
|
52 |
+
embeddings = CohereEmbeddings(model="embed-english-v3.0", cohere_api_key=cohere_api_key)
|
53 |
+
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
54 |
+
return vectorstore
|
55 |
+
|
56 |
+
# Function to set up the conversational retrieval chain
|
57 |
+
def get_conversation_chain(vectorstore):
|
58 |
+
try:
|
59 |
+
# llm = Ollama(model="llama3.2:1b")
|
60 |
+
llm = ChatGroq(model="llama-3.3-70b-versatile", temperature=0.5)
|
61 |
+
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
62 |
+
|
63 |
+
conversation_chain = ConversationalRetrievalChain.from_llm(
|
64 |
+
llm=llm,
|
65 |
+
retriever=vectorstore.as_retriever(),
|
66 |
+
memory=memory
|
67 |
+
)
|
68 |
+
|
69 |
+
logging.info("Conversation chain created successfully.")
|
70 |
+
return conversation_chain
|
71 |
+
except Exception as e:
|
72 |
+
logging.error(f"Error creating conversation chain: {e}")
|
73 |
+
st.error("An error occurred while setting up the conversation chain.")
|
74 |
+
|
75 |
+
# Handle user input
|
76 |
+
def handle_userinput(user_question):
|
77 |
+
if st.session_state.conversation is not None:
|
78 |
+
response = st.session_state.conversation({'question': user_question})
|
79 |
+
st.session_state.chat_history = response['chat_history']
|
80 |
+
|
81 |
+
for i, message in enumerate(st.session_state.chat_history):
|
82 |
+
if i % 2 == 0:
|
83 |
+
st.write(f"*User:* {message.content}")
|
84 |
+
else:
|
85 |
+
st.write(f"*Bot:* {message.content}")
|
86 |
+
else:
|
87 |
+
st.warning("Please process the documents first.")
|
88 |
+
|
89 |
+
# Main function to run the Streamlit app
|
90 |
+
def main():
|
91 |
+
load_dotenv()
|
92 |
+
st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:")
|
93 |
+
|
94 |
+
if "conversation" not in st.session_state:
|
95 |
+
st.session_state.conversation = None
|
96 |
+
if "chat_history" not in st.session_state:
|
97 |
+
st.session_state.chat_history = None
|
98 |
+
|
99 |
+
st.header("Chat with multiple PDFs :books:")
|
100 |
+
user_question = st.text_input("Ask a question about your documents:")
|
101 |
+
if user_question:
|
102 |
+
handle_userinput(user_question)
|
103 |
+
|
104 |
+
with st.sidebar:
|
105 |
+
st.subheader("Your documents")
|
106 |
+
pdf_docs = st.file_uploader(
|
107 |
+
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True
|
108 |
+
)
|
109 |
+
if st.button("Process"):
|
110 |
+
with st.spinner("Processing..."):
|
111 |
+
raw_text = get_pdf_text(pdf_docs)
|
112 |
+
text_chunks = get_text_chunks(raw_text)
|
113 |
+
vectorstore = get_vectorstore(text_chunks)
|
114 |
+
st.session_state.conversation = get_conversation_chain(vectorstore)
|
115 |
+
|
116 |
+
if __name__ == '__main__':
|
117 |
+
main()
|