import os import logging from dotenv import load_dotenv import streamlit as st from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter # from langchain.embeddings import HuggingFaceInstructEmbeddings from langchain_cohere import CohereEmbeddings from langchain.vectorstores import FAISS from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain # from langchain.llms import Ollama from langchain_groq import ChatGroq # Load environment variables load_dotenv() # Set up logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s' ) # Function to extract text from PDF files def get_pdf_text(pdf_docs): text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text # Function to split the extracted text into chunks def get_text_chunks(text): text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) return chunks # Function to create a FAISS vectorstore # def get_vectorstore(text_chunks): # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") # vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) # return vectorstore def get_vectorstore(text_chunks): cohere_api_key = os.getenv("COHERE_API_KEY") embeddings = CohereEmbeddings(model="embed-english-v3.0", cohere_api_key=cohere_api_key) vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) return vectorstore # Function to set up the conversational retrieval chain def get_conversation_chain(vectorstore): try: # llm = Ollama(model="llama3.2:1b") llm = ChatGroq(model="llama-3.3-70b-versatile", temperature=0.5) memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vectorstore.as_retriever(), memory=memory ) logging.info("Conversation chain created successfully.") return conversation_chain except Exception as e: logging.error(f"Error creating conversation chain: {e}") st.error("An error occurred while setting up the conversation chain.") # Handle user input def handle_userinput(user_question): if st.session_state.conversation is not None: response = st.session_state.conversation({'question': user_question}) st.session_state.chat_history = response['chat_history'] for i, message in enumerate(st.session_state.chat_history): if i % 2 == 0: st.write(f"*User:* {message.content}") else: st.write(f"*Bot:* {message.content}") else: st.warning("Please process the documents first.") # Main function to run the Streamlit app def main(): load_dotenv() st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:") if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = None st.header("Chat with multiple PDFs :books:") user_question = st.text_input("Ask a question about your documents:") if user_question: handle_userinput(user_question) with st.sidebar: st.subheader("Your documents") pdf_docs = st.file_uploader( "Upload your PDFs here and click on 'Process'", accept_multiple_files=True ) if st.button("Process"): with st.spinner("Processing..."): raw_text = get_pdf_text(pdf_docs) text_chunks = get_text_chunks(raw_text) vectorstore = get_vectorstore(text_chunks) st.session_state.conversation = get_conversation_chain(vectorstore) if __name__ == '__main__': main()