Spaces:
Sleeping
Sleeping
import streamlit as st | |
from diffusers import StableDiffusionPipeline | |
import torch | |
from PIL import Image | |
# Title and description of the app | |
st.title("🖼️ Stable Diffusion Image Generator") | |
st.write("Generate images from text using the Stable Diffusion v2-1 model!") | |
# Sidebar for user inputs | |
st.sidebar.title("Input Options") | |
prompt = st.sidebar.text_input("Enter your prompt", "A futuristic cityscape at sunset, vibrant colors, 8k") | |
generate_button = st.sidebar.button("Generate Image") | |
# Load the pipeline when the app starts | |
def load_pipeline(): | |
# Use a smaller and more efficient model | |
pipe = StableDiffusionPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-2-1", | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
revision="fp16" if torch.cuda.is_available() else None | |
) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipe = pipe.to(device) | |
return pipe | |
pipe = load_pipeline() | |
# Generate image when button is clicked | |
if generate_button: | |
st.write(f"### Prompt: {prompt}") | |
with st.spinner("Generating image... Please wait."): | |
try: | |
# Generate the image | |
with torch.autocast("cuda" if torch.cuda.is_available() else "cpu"): | |
image = pipe(prompt).images[0] | |
# Display the generated image | |
st.image(image, caption="Generated Image", use_column_width=True) | |
# Option to download the image | |
img_path = "generated_image.png" | |
image.save(img_path) | |
with open(img_path, "rb") as img_file: | |
st.download_button( | |
label="Download Image", | |
data=img_file, | |
file_name="generated_image.png", | |
mime="image/png" | |
) | |
except Exception as e: | |
st.error(f"An error occurred: {e}") |