Washedashore commited on
Commit
5c20cf3
·
verified ·
1 Parent(s): d6f7333

Create transform

Browse files
Files changed (1) hide show
  1. .vscode/transform +28 -0
.vscode/transform ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModel, AutoTokenizer, AutoFeatureExtractor
2
+ import torch
3
+
4
+ # Load pre-trained text and vision models
5
+ text_model = AutoModel.from_pretrained("bert-base-uncased")
6
+ vision_model = AutoModel.from_pretrained("google/vit-base-patch16-224")
7
+
8
+ # Define a simple multimodal model
9
+ class SimpleMLLM(torch.nn.Module):
10
+ def __init__(self, text_model, vision_model):
11
+ super().__init__()
12
+ self.text_model = text_model
13
+ self.vision_model = vision_model
14
+ self.fusion = torch.nn.Linear(text_model.config.hidden_size + vision_model.config.hidden_size, 512)
15
+
16
+ def forward(self, input_ids, attention_mask, pixel_values):
17
+ text_outputs = self.text_model(input_ids=input_ids, attention_mask=attention_mask)
18
+ vision_outputs = self.vision_model(pixel_values=pixel_values)
19
+
20
+ # Simple fusion of text and vision features
21
+ fused = torch.cat([text_outputs.last_hidden_state[:, 0], vision_outputs.last_hidden_state[:, 0]], dim=1)
22
+ output = self.fusion(fused)
23
+ return output
24
+
25
+ # Initialize the model
26
+ model = SimpleMLLM(text_model, vision_model)
27
+
28
+ # You would then need to implement data loading, training loop, etc.