Miipher / app.py
Wataru's picture
added files
950b34b
import gradio as gr
from miipher.dataset.preprocess_for_infer import PreprocessForInfer
from miipher.lightning_module import MiipherLightningModule
from lightning_vocoders.models.hifigan.xvector_lightning_module import HiFiGANXvectorLightningModule
import torch
import torchaudio
import hydra
import tempfile
miipher_path = "miipher_v2.ckpt"
miipher = MiipherLightningModule.load_from_checkpoint(miipher_path,map_location='cpu')
vocoder = HiFiGANXvectorLightningModule.load_from_checkpoint("vocoder_finetuned_v2.ckpt",map_location='cpu')
xvector_model = hydra.utils.instantiate(vocoder.cfg.data.xvector.model)
xvector_model = xvector_model.to('cpu')
preprocessor = PreprocessForInfer(miipher.cfg)
preprocessor.cfg.preprocess.text2phone_model.is_cuda=False
@torch.inference_mode()
def main(wav_path,transcript,lang_code):
wav,sr =torchaudio.load(wav_path)
wav = wav[0].unsqueeze(0)
batch = preprocessor.process(
'test',
(torch.tensor(wav),sr),
word_segmented_text=transcript,
lang_code=lang_code
)
miipher.feature_extractor(batch)
(
phone_feature,
speaker_feature,
degraded_ssl_feature,
_,
) = miipher.feature_extractor(batch)
cleaned_ssl_feature, _ = miipher(phone_feature,speaker_feature,degraded_ssl_feature)
vocoder_xvector = xvector_model.encode_batch(batch['degraded_wav_16k'].view(1,-1).cpu()).squeeze(1)
cleaned_wav = vocoder.generator_forward({"input_feature": cleaned_ssl_feature, "xvector": vocoder_xvector})[0].T
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as fp:
torchaudio.save(fp,cleaned_wav.view(1,-1), sample_rate=22050,format='wav')
return fp.name
description = """
# Miipher demo
This repository provices pretrained weights and demo of Miipher implementation by [Wataru-Nakata](https://github.com/Wataru-Nakata/miipher)
Miipher was originally proposed by Koizumi et. al. [arxiv](https://arxiv.org/abs/2303.01664)
Please note that the model differs in many ways from the paper.
**Non commercial use only** as the weights are provided in CC-BY-NC 2.0.
"""
inputs = [gr.Audio(label="noisy audio",type='filepath'),gr.Textbox(label="Transcript", value="Your transcript here", max_lines=1),
gr.Radio(label="Language", choices=["eng-us", "jpn"], value="eng-us")]
outputs = gr.Audio(label="Output")
demo = gr.Interface(fn=main, inputs=inputs, outputs=outputs,description=description)
demo.launch()