Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -304,10 +304,15 @@ def process_dataframe(df):
|
|
304 |
df_pred_0['Change_Blk_Eng_to_Mkbl_value'] = pd.DataFrame(blk_change.predict(df_pred), columns=["Change_Blk_Eng_to_Mkbl_value"])
|
305 |
print(df_pred_0.columns)
|
306 |
|
|
|
|
|
|
|
|
|
|
|
307 |
# for model WHT CODE
|
308 |
df_pred_0['Change_Wht_Eng_to_Mkbl_value'] = pd.DataFrame(shape_change.predict(df_pred), columns=["Change_Wht_Eng_to_Mkbl_value"])
|
309 |
print(df_pred_0.columns)
|
310 |
-
|
311 |
# for model PAV CODE (need change)
|
312 |
df_pred_0['Change_Pav_Eng_to_Mkbl_value'] = pd.DataFrame(mkble_amt_class_model.predict(df_pred), columns=["Change_Pav_Eng_to_Mkbl_value"])
|
313 |
print(df_pred_0.columns)
|
@@ -316,10 +321,6 @@ def process_dataframe(df):
|
|
316 |
df_pred_0['Change_Open_Eng_to_Mkbl_value'] = pd.DataFrame(mkble_amt_class_model.predict(df_pred), columns=["Change_Open_Eng_to_Mkbl_value"])
|
317 |
print(df_pred_0.columns)
|
318 |
|
319 |
-
# for model SHP CODE (need change)
|
320 |
-
df_pred_0['Change_shape_value'] = pd.DataFrame(mkble_amt_class_model.predict(df_pred), columns=["Change_shape_value"])
|
321 |
-
print(df_pred_0.columns)
|
322 |
-
|
323 |
# for model COL CODE (need change)
|
324 |
df_pred_0['Change_color_value'] = pd.DataFrame(mkble_amt_class_model.predict(df_pred), columns=["Change_color_value"])
|
325 |
print(df_pred_0.columns)
|
@@ -338,13 +339,17 @@ def process_dataframe(df):
|
|
338 |
|
339 |
for col in ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo',
|
340 |
'EngNts', 'EngMikly','EngBlk', 'EngWht', 'EngOpen','EngPav',
|
341 |
-
'
|
342 |
-
'
|
343 |
-
'
|
344 |
-
'
|
345 |
-
'
|
346 |
-
'
|
347 |
-
'
|
|
|
|
|
|
|
|
|
348 |
try:
|
349 |
df_pred_main[col] = loaded_label_encoder[col].inverse_transform(df_pred_main[col].astype(int))
|
350 |
except ValueError as e:
|
|
|
304 |
df_pred_0['Change_Blk_Eng_to_Mkbl_value'] = pd.DataFrame(blk_change.predict(df_pred), columns=["Change_Blk_Eng_to_Mkbl_value"])
|
305 |
print(df_pred_0.columns)
|
306 |
|
307 |
+
# for model SHP CODE (need change)
|
308 |
+
df_pred_0['Change_shape_value'] = pd.DataFrame(shape_change.predict(df_pred), columns=["Change_shape_value"])
|
309 |
+
print(df_pred_0.columns)
|
310 |
+
|
311 |
+
'''
|
312 |
# for model WHT CODE
|
313 |
df_pred_0['Change_Wht_Eng_to_Mkbl_value'] = pd.DataFrame(shape_change.predict(df_pred), columns=["Change_Wht_Eng_to_Mkbl_value"])
|
314 |
print(df_pred_0.columns)
|
315 |
+
|
316 |
# for model PAV CODE (need change)
|
317 |
df_pred_0['Change_Pav_Eng_to_Mkbl_value'] = pd.DataFrame(mkble_amt_class_model.predict(df_pred), columns=["Change_Pav_Eng_to_Mkbl_value"])
|
318 |
print(df_pred_0.columns)
|
|
|
321 |
df_pred_0['Change_Open_Eng_to_Mkbl_value'] = pd.DataFrame(mkble_amt_class_model.predict(df_pred), columns=["Change_Open_Eng_to_Mkbl_value"])
|
322 |
print(df_pred_0.columns)
|
323 |
|
|
|
|
|
|
|
|
|
324 |
# for model COL CODE (need change)
|
325 |
df_pred_0['Change_color_value'] = pd.DataFrame(mkble_amt_class_model.predict(df_pred), columns=["Change_color_value"])
|
326 |
print(df_pred_0.columns)
|
|
|
339 |
|
340 |
for col in ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo',
|
341 |
'EngNts', 'EngMikly','EngBlk', 'EngWht', 'EngOpen','EngPav',
|
342 |
+
'Change_shape_value',
|
343 |
+
#'Change_cts_value','Change_quality_value', 'Change_color_value', 'Change_cut_value',
|
344 |
+
'Change_Blk_Eng_to_Mkbl_value',
|
345 |
+
#'Change_Wht_Eng_to_Mkbl_value',
|
346 |
+
#'Change_Open_Eng_to_Mkbl_value',
|
347 |
+
#'Change_Pav_Eng_to_Mkbl_value',
|
348 |
+
#'Change_Blk_Eng_to_Grd_value','Change_Wht_Eng_to_Grd_value', 'Change_Open_Eng_to_Grd_value', 'Change_Pav_Eng_to_Grd_value',
|
349 |
+
#'Change_Blk_Eng_to_ByGrd_value', 'Change_Wht_Eng_to_ByGrd_value', 'Change_Open_Eng_to_ByGrd_value', 'Change_Pav_Eng_to_ByGrd_value',
|
350 |
+
#'Change_Blk_Eng_to_Gia_value', 'Change_Wht_Eng_to_Gia_value', 'Change_Open_Eng_to_Gia_value', 'Change_Pav_Eng_to_Gia_value'
|
351 |
+
]:
|
352 |
+
|
353 |
try:
|
354 |
df_pred_main[col] = loaded_label_encoder[col].inverse_transform(df_pred_main[col].astype(int))
|
355 |
except ValueError as e:
|