WebashalarForML commited on
Commit
15f93c7
Β·
verified Β·
1 Parent(s): 41fe47a

Create README2.md

Browse files
Files changed (1) hide show
  1. README2.md +125 -0
README2.md ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Here's a `README.md` file for your **AI-based Diamond Price Prediction and Classification** project, incorporating details from the proposal while maintaining a clear and structured format.
2
+
3
+ ```markdown
4
+ # AI-Based Diamond Price Prediction and Classification
5
+
6
+ This project aims to predict diamond grading prices, GIA-certified prices, and classification-based changes in diamond attributes using machine learning models. The system processes diamond attributes from engineer plans and provides AI-driven insights into pricing and parameter variations.
7
+
8
+ ---
9
+
10
+ ## πŸš€ Project Overview
11
+
12
+ The goal of this project is to develop an AI-driven pipeline for automating diamond grading and certification price predictions. The system leverages machine learning models to analyze historical diamond data, predict pricing estimates, and provide classification-based recommendations.
13
+
14
+ ### πŸ”Ή Features:
15
+ - Predict **GIA-certified prices** and **grading prices** for diamonds.
16
+ - Classify and recommend **potential changes in diamond parameters**.
17
+ - Analyze **historical data trends** for better forecasting.
18
+ - Provide **real-time AI predictions via a web-based interface**.
19
+
20
+ ---
21
+
22
+ ## πŸ“Œ Problem Statement
23
+
24
+ Diamond pricing and grading involve complex, time-consuming manual evaluations. This project automates the process by utilizing **machine learning models** to predict pricing, detect parameter changes, and generate valuable insights for decision-making.
25
+
26
+ ---
27
+
28
+ ## βš™οΈ Tech Stack
29
+
30
+ | Component | Tools & Technologies |
31
+ |-----------------|---------------------|
32
+ | **Data Collection** | Python (Requests, SQL) |
33
+ | **Data Preprocessing** | Pandas, NumPy, Scikit-learn Pipelines |
34
+ | **Model Development** | Scikit-learn, XGBoost, LightGBM, TensorFlow/PyTorch |
35
+ | **Model Evaluation** | Scikit-learn metrics (RMSE, MAE, RΒ²), Evidently, Prometheus |
36
+ | **Deployment** | Flask, FastAPI, Docker |
37
+
38
+ ---
39
+
40
+ ## πŸ›  Setup & Installation
41
+
42
+ ### 1️⃣ Create a Virtual Environment
43
+ ```bash
44
+ python -m venv venv
45
+ source venv/bin/activate # On Windows: venv\Scripts\activate
46
+ ```
47
+
48
+ ### 2️⃣ Install Dependencies
49
+ ```bash
50
+ pip install -r requirements.txt
51
+ ```
52
+
53
+ ### 3️⃣ Run the Application
54
+ ```bash
55
+ python app.py
56
+ ```
57
+
58
+ OR (if using Docker)
59
+ ```bash
60
+ docker-compose up --build
61
+ ```
62
+
63
+ ---
64
+
65
+ ## πŸ“Š Application Workflow
66
+
67
+ ### **πŸ”Ή Prediction Module**
68
+ **Input:** Diamond parameters from engineer plans:
69
+ `Tag, EngCts, EngShp, EngQua, EngCol, EngCut, EngPol, EngSym, EngFlo, EngNts, EngMikly, EngLab, EngAmt`
70
+
71
+ **Process:**
72
+ 1. **Historical Learning:** AI model learns from past diamond data.
73
+ 2. **Training:** Identifies patterns linking diamond attributes to final pricing.
74
+ 3. **Deployment:** Predicts `GrdAmt, ByGrdAmt, GiaAmt` for new inputs.
75
+
76
+ **Output:**
77
+ - AI-generated price estimates with **>95% accuracy**.
78
+
79
+ ---
80
+
81
+ ### **πŸ”Ή Classification Module**
82
+ **Input:** Engineer Plan data with additional attributes:
83
+ `Tag, EngCts, EngShp, EngQua, EngCol, EngCut, EngPol, EngSym, EngFlo, EngNts, EngMikly, EngLab, EngAmt, Carat, Black_Code, White_Code`
84
+
85
+ **Process:**
86
+ 1. **AI Model Training:** Learns from past cases where Carat, Black_Code, or White_Code led to different outcomes.
87
+ 2. **Alert Generation:** Detects discrepancies in new inputs and suggests corrections.
88
+
89
+ **Output:**
90
+ - **Alerts and recommendations** for potential adjustments in diamond parameters.
91
+
92
+ ---
93
+
94
+ ## πŸ“‚ App Structure
95
+
96
+ ```
97
+ .
98
+ β”œβ”€β”€ app.py # Flask application
99
+ β”œβ”€β”€ templates/
100
+ β”‚ β”œβ”€β”€ index.html # Home page
101
+ β”‚ β”œβ”€β”€ output.html # Prediction result display
102
+ β”œβ”€β”€ uploads/ # Uploaded diamond datasets
103
+ β”œβ”€β”€ Model/ # Trained AI models (joblib)
104
+ β”œβ”€β”€ Label_encoders/ # Encoders for categorical variables
105
+ β”œβ”€β”€ requirements.txt # Dependencies
106
+ β”œβ”€β”€ Dockerfile # Containerization setup
107
+ β”œβ”€β”€ README.md # Documentation
108
+ ```
109
+
110
+ ---
111
+
112
+ ## 🌟 Key Features
113
+
114
+ βœ” **GIA Price Prediction** – Estimates diamond grading costs.
115
+ βœ” **Parameter Classification** – Identifies changes in carat, shape, and other factors.
116
+ βœ” **Real-time AI Predictions** – Instant price estimates based on historical data.
117
+ βœ” **User-friendly Web Interface** – Upload diamond data and get instant insights.
118
+ βœ” **Downloadable Reports** – Export predictions and analysis as CSV files.
119
+
120
+ ---
121
+
122
+ ## πŸ›  API Endpoints
123
+
124
+ | Endpoint | Method | Description |
125
+ |----------|--------|-------------