from flask import Flask, render_template, request, redirect, url_for, flash, send_file
import os
import pandas as pd
from werkzeug.utils import secure_filename
from joblib import load
import numpy as np
from sklearn.preprocessing import LabelEncoder
from time import time

app = Flask(__name__)

# Set the secret key for session management
app.secret_key = os.urandom(24)

# Configurations
UPLOAD_FOLDER = "uploads/"
DATA_FOLDER = "data/"

# Define the model directory and label encoder directory
MODEL_DIR = r'./Model'
LABEL_ENOCDER_DIR = r'./Label_encoders'

# Global file names for outputs; these will be updated per prediction.
PRED_OUTPUT_FILE = "data/pred_output.csv"
CLASS_OUTPUT_FILE = "data/class_output.csv"

ALLOWED_EXTENSIONS = {'csv', 'xlsx'}

app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)

# ------------------------------
# Load Models and Label Encoders
# ------------------------------
gia_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_gia_price.joblib'))
grade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_grade_price.joblib'))
bygrade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_bygrade_price.joblib'))
makable_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_makable_price.joblib'))

col_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_col.joblib'))
cts_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cts.joblib'))
cut_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cut.joblib'))
qua_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_qua.joblib'))
shp_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_shp.joblib'))

blk_eng_to_mkbl_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_mkbl_blk.joblib'))
wht_eng_to_mkbl_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_mkbl_wht.joblib'))
open_eng_to_mkbl_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_mkbl_open.joblib'))
pav_eng_to_mkbl_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_mkbl_pav.joblib'))
blk_eng_to_grade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_grade_blk.joblib'))
wht_eng_to_grade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_grade_wht.joblib'))
open_eng_to_grade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_grade_open.joblib'))
pav_eng_to_grade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_grade_pav.joblib'))
blk_eng_to_bygrade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_bygrade_blk.joblib'))
wht_eng_to_bygrade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_bygrade_wht.joblib'))
open_eng_to_bygrade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_bygrade_open.joblib'))
pav_eng_to_bygrade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_bygrade_pav.joblib'))
blk_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_blk.joblib'))
wht_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_wht.joblib'))
open_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_open.joblib'))
pav_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_pav.joblib'))

encoder_list = ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo',
                'EngNts', 'EngMikly', 'EngLab','EngBlk', 'EngWht', 'EngOpen','EngPav',
                'Change_cts_value', 'Change_shape_value', 'Change_quality_value', 'Change_color_value',
                'Change_cut_value', 'Change_Blk_Eng_to_Mkbl_value', 'Change_Wht_Eng_to_Mkbl_value',
                'Change_Open_Eng_to_Mkbl_value', 'Change_Pav_Eng_to_Mkbl_value', 'Change_Blk_Eng_to_Grd_value',
                'Change_Wht_Eng_to_Grd_value', 'Change_Open_Eng_to_Grd_value', 'Change_Pav_Eng_to_Grd_value',
                'Change_Blk_Eng_to_ByGrd_value', 'Change_Wht_Eng_to_ByGrd_value', 'Change_Open_Eng_to_ByGrd_value',
                'Change_Pav_Eng_to_ByGrd_value', 'Change_Blk_Eng_to_Gia_value', 'Change_Wht_Eng_to_Gia_value',
                'Change_Open_Eng_to_Gia_value', 'Change_Pav_Eng_to_Gia_value']

loaded_label_encoder = {}
for val in encoder_list:
    encoder_path = os.path.join(LABEL_ENOCDER_DIR, f"label_encoder_{val}.joblib")
    loaded_label_encoder[val] = load(encoder_path)

# ------------------------------
# Utility: Allowed File Check
# ------------------------------
def allowed_file(filename):
    return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

# ------------------------------
# Routes
# ------------------------------
@app.route('/')
def index():
    return render_template('index.html')

@app.route('/predict', methods=['POST'])
def predict():
    if 'file' not in request.files:
        flash('No file part', 'error')
        return redirect(request.url)
    
    file = request.files['file']
    if file.filename == '':
        flash('No selected file', 'error')
        return redirect(request.url)
    
    if file and allowed_file(file.filename):
        filename = secure_filename(file.filename)
        filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
        file.save(filepath)
        
        # Convert file to DataFrame
        if filename.endswith('.csv'):
            df = pd.read_csv(filepath)
        else:
            df = pd.read_excel(filepath)
        
        # Process the DataFrame and generate predictions and classification analysis.
        df_pred, dx_class = process_dataframe(df)
        
        # Save output files with a timestamp (you can also store in session if needed)
        current_date = pd.Timestamp.now().strftime("%Y-%m-%d")
        global PRED_OUTPUT_FILE, CLASS_OUTPUT_FILE
        PRED_OUTPUT_FILE = f'data/prediction_output_{current_date}.csv'
        CLASS_OUTPUT_FILE = f'data/classification_output_{current_date}.csv'
        df_pred.to_csv(PRED_OUTPUT_FILE, index=False)
        dx_class.to_csv(CLASS_OUTPUT_FILE, index=False)
        
        # Redirect to report view; default to prediction report, page 1.
        return redirect(url_for('report_view', report_type='pred', page=1))
    else:
        flash('Invalid file type. Only CSV and Excel files are allowed.', 'error')
        return redirect(request.url)

def process_dataframe(df):
    try:
        # Define the columns needed for two parts
        required_columns = ['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut',
                            'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngAmt']
        required_columns_2 = required_columns + ['EngBlk', 'EngWht', 'EngOpen', 'EngPav']
        
        # Create two DataFrames: one for prediction and one for classification.
        df_pred = df[required_columns].copy()
        df_class = df[required_columns_2].fillna("NA").copy()
        
        # Transform categorical columns for prediction DataFrame using the label encoders.
        for col in ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly']:
            df_pred[col] = loaded_label_encoder[col].transform(df_pred[col])
        
        # Update the classification DataFrame with the transformed prediction columns.
        for col in ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly']:
            df_class[col] = df_pred[col]
        
        # Transform the extra columns in the classification DataFrame.
        for col in ['EngBlk', 'EngWht', 'EngOpen', 'EngPav']:
            df_class[col] = loaded_label_encoder[col].transform(df_class[col])
        
        # Convert both DataFrames to float (or handle as needed).
        df_pred = df_pred.astype(float)
        df_class = df_class.astype(float)
        
        # -------------------------
        # Prediction Report Section
        # -------------------------
        # Use the prediction DataFrame for price predictions.
        x = df_pred.copy()
        df_pred['GIA_Predicted'] = gia_model.predict(x)
        df_pred['Grade_Predicted'] = grade_model.predict(x)
        df_pred['ByGrade_Predicted'] = bygrade_model.predict(x)
        df_pred['Makable_Predicted'] = makable_model.predict(x)
        df_pred['GIA_Diff'] = df_pred['EngAmt'] - df_pred['GIA_Predicted']
        df_pred['Grade_Diff'] = df_pred['EngAmt'] - df_pred['Grade_Predicted']
        df_pred['ByGrade_Diff'] = df_pred['EngAmt'] - df_pred['ByGrade_Predicted']
        df_pred['Makable_Diff'] = df_pred['EngAmt'] - df_pred['Makable_Predicted']
        
        # -------------------------
        # Classification Report Section
        # -------------------------
        # For classification, use df_class (which has extra columns).
        x2 = df_class.copy()
        dx = df_pred.copy()  # Start with the prediction data.
        dx['col_change'] = col_model.predict(x)
        dx['cts_change'] = cts_model.predict(x)
        dx['cut_change'] = cut_model.predict(x)
        dx['qua_change'] = qua_model.predict(x)
        dx['shp_change'] = shp_model.predict(x)
        dx['Change_Blk_Eng_to_Mkbl_value'] = blk_eng_to_mkbl_model.predict(x2)
        dx['Change_Wht_Eng_to_Mkbl_value'] = wht_eng_to_mkbl_model.predict(x2)
        dx['Change_Open_Eng_to_Mkbl_value'] = open_eng_to_mkbl_model.predict(x2)
        dx['Change_Pav_Eng_to_Mkbl_value'] = pav_eng_to_mkbl_model.predict(x2)
        dx['Change_Blk_Eng_to_Grd_value'] = blk_eng_to_grade_model.predict(x2)
        dx['Change_Wht_Eng_to_Grd_value'] = wht_eng_to_grade_model.predict(x2)
        dx['Change_Open_Eng_to_Grd_value'] = open_eng_to_grade_model.predict(x2)
        dx['Change_Pav_Eng_to_Grd_value'] = pav_eng_to_grade_model.predict(x2)
        dx['Change_Blk_Eng_to_ByGrd_value'] = blk_eng_to_bygrade_model.predict(x2)
        dx['Change_Wht_Eng_to_ByGrd_value'] = wht_eng_to_bygrade_model.predict(x2)
        dx['Change_Open_Eng_to_ByGrd_value'] = open_eng_to_bygrade_model.predict(x2)
        dx['Change_Pav_Eng_to_ByGrd_value'] = pav_eng_to_bygrade_model.predict(x2)
        dx['Change_Blk_Eng_to_Gia_value'] = blk_eng_to_gia_model.predict(x2)
        dx['Change_Wht_Eng_to_Gia_value'] = wht_eng_to_gia_model.predict(x2)
        dx['Change_Open_Eng_to_Gia_value'] = open_eng_to_gia_model.predict(x2)
        dx['Change_Pav_Eng_to_Gia_value'] = pav_eng_to_gia_model.predict(x2)
        
        # Inverse transform classification predictions.
        dx['col_change'] = loaded_label_encoder['Change_color_value'].inverse_transform(dx['col_change'])
        dx['cts_change'] = loaded_label_encoder['Change_cts_value'].inverse_transform(dx['cts_change'])
        dx['cut_change'] = loaded_label_encoder['Change_cut_value'].inverse_transform(dx['cut_change'])
        dx['qua_change'] = loaded_label_encoder['Change_quality_value'].inverse_transform(dx['qua_change'])
        dx['shp_change'] = loaded_label_encoder['Change_shape_value'].inverse_transform(dx['shp_change'])
        dx['Change_Blk_Eng_to_Mkbl_value'] = loaded_label_encoder['Change_Blk_Eng_to_Mkbl_value'].inverse_transform(dx['Change_Blk_Eng_to_Mkbl_value'])
        dx['Change_Wht_Eng_to_Mkbl_value'] = loaded_label_encoder['Change_Wht_Eng_to_Mkbl_value'].inverse_transform(dx['Change_Wht_Eng_to_Mkbl_value'])
        dx['Change_Open_Eng_to_Mkbl_value'] = loaded_label_encoder['Change_Open_Eng_to_Mkbl_value'].inverse_transform(dx['Change_Open_Eng_to_Mkbl_value'])
        dx['Change_Pav_Eng_to_Mkbl_value'] = loaded_label_encoder['Change_Pav_Eng_to_Mkbl_value'].inverse_transform(dx['Change_Pav_Eng_to_Mkbl_value'])
        dx['Change_Blk_Eng_to_Grd_value'] = loaded_label_encoder['Change_Blk_Eng_to_Grd_value'].inverse_transform(dx['Change_Blk_Eng_to_Grd_value'])
        dx['Change_Wht_Eng_to_Grd_value'] = loaded_label_encoder['Change_Wht_Eng_to_Grd_value'].inverse_transform(dx['Change_Wht_Eng_to_Grd_value'])
        dx['Change_Open_Eng_to_Grd_value'] = loaded_label_encoder['Change_Open_Eng_to_Grd_value'].inverse_transform(dx['Change_Open_Eng_to_Grd_value'])
        dx['Change_Pav_Eng_to_Grd_value'] = loaded_label_encoder['Change_Pav_Eng_to_Grd_value'].inverse_transform(dx['Change_Pav_Eng_to_Grd_value'])
        dx['Change_Blk_Eng_to_ByGrd_value'] = loaded_label_encoder['Change_Blk_Eng_to_ByGrd_value'].inverse_transform(dx['Change_Blk_Eng_to_ByGrd_value'])
        dx['Change_Wht_Eng_to_ByGrd_value'] = loaded_label_encoder['Change_Wht_Eng_to_ByGrd_value'].inverse_transform(dx['Change_Wht_Eng_to_ByGrd_value'])
        dx['Change_Open_Eng_to_ByGrd_value'] = loaded_label_encoder['Change_Open_Eng_to_ByGrd_value'].inverse_transform(dx['Change_Open_Eng_to_ByGrd_value'])
        dx['Change_Pav_Eng_to_ByGrd_value'] = loaded_label_encoder['Change_Pav_Eng_to_ByGrd_value'].inverse_transform(dx['Change_Pav_Eng_to_ByGrd_value'])
        dx['Change_Blk_Eng_to_Gia_value'] = loaded_label_encoder['Change_Blk_Eng_to_Gia_value'].inverse_transform(dx['Change_Blk_Eng_to_Gia_value'])
        dx['Change_Wht_Eng_to_Gia_value'] = loaded_label_encoder['Change_Wht_Eng_to_Gia_value'].inverse_transform(dx['Change_Wht_Eng_to_Gia_value'])
        dx['Change_Open_Eng_to_Gia_value'] = loaded_label_encoder['Change_Open_Eng_to_Gia_value'].inverse_transform(dx['Change_Open_Eng_to_Gia_value'])
        dx['Change_Pav_Eng_to_Gia_value'] = loaded_label_encoder['Change_Pav_Eng_to_Gia_value'].inverse_transform(dx['Change_Pav_Eng_to_Gia_value'])
        
        return df_pred, dx.head(len(df_pred))  # Return full DataFrames for pagination later.
    except Exception as e:
        flash(f'Error processing file: {e}', 'error')
        return pd.DataFrame(), pd.DataFrame()

# ------------------------------
# Report View Route with Pagination & Toggle
# ------------------------------
@app.route('/report')
def report_view():
    # Get query parameters: report_type (pred or class) and page number.
    report_type = request.args.get('report_type', 'pred')
    try:
        page = int(request.args.get('page', 1))
    except ValueError:
        page = 1
    per_page = 15  # records per page
    
    # Read the appropriate CSV file.
    if report_type == 'pred':
        df = pd.read_csv(PRED_OUTPUT_FILE)
    else:
        df = pd.read_csv(CLASS_OUTPUT_FILE)
    
    # Calculate pagination indices.
    start_idx = (page - 1) * per_page
    end_idx = start_idx + per_page
    total_records = len(df)
    
    # Slice the DataFrame for the current page.
    df_page = df.iloc[start_idx:end_idx]
    table_html = df_page.to_html(classes="data-table", index=False)
    
    # Determine if previous/next pages exist.
    has_prev = page > 1
    has_next = end_idx < total_records
    
    return render_template('output.html',
                           table_html=table_html,
                           report_type=report_type,
                           page=page,
                           has_prev=has_prev,
                           has_next=has_next)

# ------------------------------
# Download Routes (remain unchanged)
# ------------------------------
@app.route('/download_pred', methods=['GET'])
def download_pred():
    return send_file(PRED_OUTPUT_FILE, as_attachment=True)

@app.route('/download_class', methods=['GET'])
def download_class():
    return send_file(CLASS_OUTPUT_FILE, as_attachment=True)

if __name__ == "__main__":
    app.run(debug=True)