WebashalarForML commited on
Commit
10fed76
·
verified ·
1 Parent(s): 39d5a80

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -32
app.py CHANGED
@@ -275,42 +275,52 @@ def process_dataframe(df):
275
  # -------------------------
276
  # Prediction Report Section
277
  # -------------------------
278
- x = df_pred.copy()
279
- df_pred['GIA_Predicted'] = gia_model.predict(x)
280
- df_pred['Grade_Predicted'] = grade_model.predict(x)
281
- df_pred['ByGrade_Predicted'] = bygrade_model.predict(x)
282
- df_pred['Makable_Predicted'] = makable_model.predict(x)
283
- df_pred['GIA_Diff'] = df_pred['EngAmt'] - df_pred['GIA_Predicted']
284
- df_pred['Grade_Diff'] = df_pred['EngAmt'] - df_pred['Grade_Predicted']
285
- df_pred['ByGrade_Diff'] = df_pred['EngAmt'] - df_pred['ByGrade_Predicted']
286
- df_pred['Makable_Diff'] = df_pred['EngAmt'] - df_pred['Makable_Predicted']
 
 
 
287
 
288
  # -------------------------
289
  # Classification Report Section
290
  # -------------------------
291
- x2 = df_class.copy()
292
- dx = df_pred.copy() # Start with the prediction data.
293
- dx['col_change'] = col_model.predict(x2)
294
- dx['cts_change'] = cts_model.predict(x2)
295
- dx['cut_change'] = cut_model.predict(x2)
296
- dx['qua_change'] = qua_model.predict(x2)
297
- dx['shp_change'] = shp_model.predict(x2)
298
- dx['Change_Blk_Eng_to_Mkbl_value'] = blk_eng_to_mkbl_model.predict(x)
299
- dx['Change_Wht_Eng_to_Mkbl_value'] = wht_eng_to_mkbl_model.predict(x)
300
- dx['Change_Open_Eng_to_Mkbl_value'] = open_eng_to_mkbl_model.predict(x)
301
- dx['Change_Pav_Eng_to_Mkbl_value'] = pav_eng_to_mkbl_model.predict(x)
302
- dx['Change_Blk_Eng_to_Grd_value'] = blk_eng_to_grade_model.predict(x)
303
- dx['Change_Wht_Eng_to_Grd_value'] = wht_eng_to_grade_model.predict(x)
304
- dx['Change_Open_Eng_to_Grd_value'] = open_eng_to_grade_model.predict(x)
305
- dx['Change_Pav_Eng_to_Grd_value'] = pav_eng_to_grade_model.predict(x)
306
- dx['Change_Blk_Eng_to_ByGrd_value'] = blk_eng_to_bygrade_model.predict(x)
307
- dx['Change_Wht_Eng_to_ByGrd_value'] = wht_eng_to_bygrade_model.predict(x)
308
- dx['Change_Open_Eng_to_ByGrd_value'] = open_eng_to_bygrade_model.predict(x)
309
- dx['Change_Pav_Eng_to_ByGrd_value'] = pav_eng_to_bygrade_model.predict(x)
310
- dx['Change_Blk_Eng_to_Gia_value'] = blk_eng_to_gia_model.predict(x)
311
- dx['Change_Wht_Eng_to_Gia_value'] = wht_eng_to_gia_model.predict(x)
312
- dx['Change_Open_Eng_to_Gia_value'] = open_eng_to_gia_model.predict(x)
313
- dx['Change_Pav_Eng_to_Gia_value'] = pav_eng_to_gia_model.predict(x)
 
 
 
 
 
 
 
314
 
315
  # Inverse transform classification predictions.
316
  dx['col_change'] = loaded_label_encoder['Change_color_value'].inverse_transform(dx['col_change'])
 
275
  # -------------------------
276
  # Prediction Report Section
277
  # -------------------------
278
+ try:
279
+ x = df_pred.copy()
280
+ df_pred['GIA_Predicted'] = gia_model.predict(x)
281
+ df_pred['Grade_Predicted'] = grade_model.predict(x)
282
+ df_pred['ByGrade_Predicted'] = bygrade_model.predict(x)
283
+ df_pred['Makable_Predicted'] = makable_model.predict(x)
284
+ df_pred['GIA_Diff'] = df_pred['EngAmt'] - df_pred['GIA_Predicted']
285
+ df_pred['Grade_Diff'] = df_pred['EngAmt'] - df_pred['Grade_Predicted']
286
+ df_pred['ByGrade_Diff'] = df_pred['EngAmt'] - df_pred['ByGrade_Predicted']
287
+ df_pred['Makable_Diff'] = df_pred['EngAmt'] - df_pred['Makable_Predicted']
288
+ except ValueError as e:
289
+ print(f'pred model error----->: {e}', 'error')
290
 
291
  # -------------------------
292
  # Classification Report Section
293
  # -------------------------
294
+ try:
295
+ x2 = df_class.copy()
296
+ dx = df_pred.copy() # Start with the prediction data.
297
+ dx['col_change'] = col_model.predict(x2)
298
+ dx['cts_change'] = cts_model.predict(x2)
299
+ dx['cut_change'] = cut_model.predict(x2)
300
+ dx['qua_change'] = qua_model.predict(x2)
301
+ dx['shp_change'] = shp_model.predict(x2)
302
+ except ValueError as e:
303
+ print(f'class model error----->: {e}', 'error')
304
+
305
+ try:
306
+ dx['Change_Blk_Eng_to_Mkbl_value'] = blk_eng_to_mkbl_model.predict(x)
307
+ dx['Change_Wht_Eng_to_Mkbl_value'] = wht_eng_to_mkbl_model.predict(x)
308
+ dx['Change_Open_Eng_to_Mkbl_value'] = open_eng_to_mkbl_model.predict(x)
309
+ dx['Change_Pav_Eng_to_Mkbl_value'] = pav_eng_to_mkbl_model.predict(x)
310
+ dx['Change_Blk_Eng_to_Grd_value'] = blk_eng_to_grade_model.predict(x)
311
+ dx['Change_Wht_Eng_to_Grd_value'] = wht_eng_to_grade_model.predict(x)
312
+ dx['Change_Open_Eng_to_Grd_value'] = open_eng_to_grade_model.predict(x)
313
+ dx['Change_Pav_Eng_to_Grd_value'] = pav_eng_to_grade_model.predict(x)
314
+ dx['Change_Blk_Eng_to_ByGrd_value'] = blk_eng_to_bygrade_model.predict(x)
315
+ dx['Change_Wht_Eng_to_ByGrd_value'] = wht_eng_to_bygrade_model.predict(x)
316
+ dx['Change_Open_Eng_to_ByGrd_value'] = open_eng_to_bygrade_model.predict(x)
317
+ dx['Change_Pav_Eng_to_ByGrd_value'] = pav_eng_to_bygrade_model.predict(x)
318
+ dx['Change_Blk_Eng_to_Gia_value'] = blk_eng_to_gia_model.predict(x)
319
+ dx['Change_Wht_Eng_to_Gia_value'] = wht_eng_to_gia_model.predict(x)
320
+ dx['Change_Open_Eng_to_Gia_value'] = open_eng_to_gia_model.predict(x)
321
+ dx['Change_Pav_Eng_to_Gia_value'] = pav_eng_to_gia_model.predict(x)
322
+ except ValueError as e:
323
+ print(f'grade_code model error----->: {e}', 'error')
324
 
325
  # Inverse transform classification predictions.
326
  dx['col_change'] = loaded_label_encoder['Change_color_value'].inverse_transform(dx['col_change'])