Update app.py
Browse files
app.py
CHANGED
@@ -275,42 +275,52 @@ def process_dataframe(df):
|
|
275 |
# -------------------------
|
276 |
# Prediction Report Section
|
277 |
# -------------------------
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
|
|
|
|
|
|
287 |
|
288 |
# -------------------------
|
289 |
# Classification Report Section
|
290 |
# -------------------------
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
|
315 |
# Inverse transform classification predictions.
|
316 |
dx['col_change'] = loaded_label_encoder['Change_color_value'].inverse_transform(dx['col_change'])
|
|
|
275 |
# -------------------------
|
276 |
# Prediction Report Section
|
277 |
# -------------------------
|
278 |
+
try:
|
279 |
+
x = df_pred.copy()
|
280 |
+
df_pred['GIA_Predicted'] = gia_model.predict(x)
|
281 |
+
df_pred['Grade_Predicted'] = grade_model.predict(x)
|
282 |
+
df_pred['ByGrade_Predicted'] = bygrade_model.predict(x)
|
283 |
+
df_pred['Makable_Predicted'] = makable_model.predict(x)
|
284 |
+
df_pred['GIA_Diff'] = df_pred['EngAmt'] - df_pred['GIA_Predicted']
|
285 |
+
df_pred['Grade_Diff'] = df_pred['EngAmt'] - df_pred['Grade_Predicted']
|
286 |
+
df_pred['ByGrade_Diff'] = df_pred['EngAmt'] - df_pred['ByGrade_Predicted']
|
287 |
+
df_pred['Makable_Diff'] = df_pred['EngAmt'] - df_pred['Makable_Predicted']
|
288 |
+
except ValueError as e:
|
289 |
+
print(f'pred model error----->: {e}', 'error')
|
290 |
|
291 |
# -------------------------
|
292 |
# Classification Report Section
|
293 |
# -------------------------
|
294 |
+
try:
|
295 |
+
x2 = df_class.copy()
|
296 |
+
dx = df_pred.copy() # Start with the prediction data.
|
297 |
+
dx['col_change'] = col_model.predict(x2)
|
298 |
+
dx['cts_change'] = cts_model.predict(x2)
|
299 |
+
dx['cut_change'] = cut_model.predict(x2)
|
300 |
+
dx['qua_change'] = qua_model.predict(x2)
|
301 |
+
dx['shp_change'] = shp_model.predict(x2)
|
302 |
+
except ValueError as e:
|
303 |
+
print(f'class model error----->: {e}', 'error')
|
304 |
+
|
305 |
+
try:
|
306 |
+
dx['Change_Blk_Eng_to_Mkbl_value'] = blk_eng_to_mkbl_model.predict(x)
|
307 |
+
dx['Change_Wht_Eng_to_Mkbl_value'] = wht_eng_to_mkbl_model.predict(x)
|
308 |
+
dx['Change_Open_Eng_to_Mkbl_value'] = open_eng_to_mkbl_model.predict(x)
|
309 |
+
dx['Change_Pav_Eng_to_Mkbl_value'] = pav_eng_to_mkbl_model.predict(x)
|
310 |
+
dx['Change_Blk_Eng_to_Grd_value'] = blk_eng_to_grade_model.predict(x)
|
311 |
+
dx['Change_Wht_Eng_to_Grd_value'] = wht_eng_to_grade_model.predict(x)
|
312 |
+
dx['Change_Open_Eng_to_Grd_value'] = open_eng_to_grade_model.predict(x)
|
313 |
+
dx['Change_Pav_Eng_to_Grd_value'] = pav_eng_to_grade_model.predict(x)
|
314 |
+
dx['Change_Blk_Eng_to_ByGrd_value'] = blk_eng_to_bygrade_model.predict(x)
|
315 |
+
dx['Change_Wht_Eng_to_ByGrd_value'] = wht_eng_to_bygrade_model.predict(x)
|
316 |
+
dx['Change_Open_Eng_to_ByGrd_value'] = open_eng_to_bygrade_model.predict(x)
|
317 |
+
dx['Change_Pav_Eng_to_ByGrd_value'] = pav_eng_to_bygrade_model.predict(x)
|
318 |
+
dx['Change_Blk_Eng_to_Gia_value'] = blk_eng_to_gia_model.predict(x)
|
319 |
+
dx['Change_Wht_Eng_to_Gia_value'] = wht_eng_to_gia_model.predict(x)
|
320 |
+
dx['Change_Open_Eng_to_Gia_value'] = open_eng_to_gia_model.predict(x)
|
321 |
+
dx['Change_Pav_Eng_to_Gia_value'] = pav_eng_to_gia_model.predict(x)
|
322 |
+
except ValueError as e:
|
323 |
+
print(f'grade_code model error----->: {e}', 'error')
|
324 |
|
325 |
# Inverse transform classification predictions.
|
326 |
dx['col_change'] = loaded_label_encoder['Change_color_value'].inverse_transform(dx['col_change'])
|