WebashalarForML commited on
Commit
610674c
·
verified ·
1 Parent(s): 673a3d9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -0
app.py CHANGED
@@ -6,6 +6,9 @@ from joblib import load
6
  import numpy as np
7
  from sklearn.preprocessing import LabelEncoder
8
  from time import time
 
 
 
9
 
10
  app = Flask(__name__)
11
 
@@ -15,6 +18,7 @@ app.secret_key = os.urandom(24)
15
  # Configurations
16
  UPLOAD_FOLDER = "uploads/"
17
  DATA_FOLDER = "data/"
 
18
 
19
  # Define the model directory and label encoder directory
20
  MODEL_DIR = r'./Model'
@@ -29,14 +33,33 @@ ALLOWED_EXTENSIONS = {'csv', 'xlsx'}
29
  app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
30
  os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
31
 
 
 
 
 
 
 
32
  # ------------------------------
33
  # Load Models and Label Encoders
34
  # ------------------------------
 
 
 
 
 
 
 
 
 
 
 
 
35
  gia_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_gia_price.joblib'))
36
  grade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_grade_price.joblib'))
37
  bygrade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_bygrade_price.joblib'))
38
  makable_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_makable_price.joblib'))
39
 
 
40
  col_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_col.joblib'))
41
  cts_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cts.joblib'))
42
  cut_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cut.joblib'))
 
6
  import numpy as np
7
  from sklearn.preprocessing import LabelEncoder
8
  from time import time
9
+ from huggingface_hub import hf_hub_download
10
+ import pickle
11
+ import os
12
 
13
  app = Flask(__name__)
14
 
 
18
  # Configurations
19
  UPLOAD_FOLDER = "uploads/"
20
  DATA_FOLDER = "data/"
21
+ MODEL_FOLDER = "models/"
22
 
23
  # Define the model directory and label encoder directory
24
  MODEL_DIR = r'./Model'
 
33
  app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
34
  os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
35
 
36
+ app.config['DATA_FOLDER'] = UPLOAD_FOLDER
37
+ os.makedirs(app.config['DATA_FOLDER'], exist_ok=True)
38
+
39
+ app.config['MODEL_FOLDER'] = UPLOAD_FOLDER
40
+ os.makedirs(app.config['MODEL_FOLDER'], exist_ok=True)
41
+
42
  # ------------------------------
43
  # Load Models and Label Encoders
44
  # ------------------------------
45
+
46
+ # prediction analysis
47
+ # Download the model file to the specified location
48
+ file_path = hf_hub_download(
49
+ repo_id="WebashalarForML/Diamond_model_",
50
+ filename="models_list/bygrad/CatBoost_best_pipeline_BYGRADE.pkl",
51
+ cache_dir=specific_location
52
+ )
53
+
54
+ with open(file_path, "rb") as f:
55
+ model = pickle.load(f)
56
+
57
  gia_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_gia_price.joblib'))
58
  grade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_grade_price.joblib'))
59
  bygrade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_bygrade_price.joblib'))
60
  makable_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_makable_price.joblib'))
61
 
62
+ # classifcation analysis
63
  col_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_col.joblib'))
64
  cts_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cts.joblib'))
65
  cut_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cut.joblib'))