Update app.py
Browse files
app.py
CHANGED
@@ -146,6 +146,7 @@ print("mkble_amt_class_model type:", type(mkble_amt_class_model))
|
|
146 |
|
147 |
|
148 |
# Classification models loaded using joblib.
|
|
|
149 |
col_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_col.joblib'))
|
150 |
cts_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cts.joblib'))
|
151 |
cut_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cut.joblib'))
|
@@ -168,6 +169,8 @@ blk_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegr
|
|
168 |
wht_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_wht.joblib'))
|
169 |
open_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_open.joblib'))
|
170 |
pav_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_pav.joblib'))
|
|
|
|
|
171 |
|
172 |
# List of label encoder names.
|
173 |
encoder_list = [
|
@@ -322,6 +325,7 @@ def process_dataframe(df):
|
|
322 |
# -------------------------
|
323 |
# Classification Report Section
|
324 |
# -------------------------
|
|
|
325 |
try:
|
326 |
x2 = df_class.copy()
|
327 |
dx = df_pred.copy() # Start with the prediction data.
|
@@ -375,9 +379,11 @@ def process_dataframe(df):
|
|
375 |
dx['Change_Wht_Eng_to_Gia_value'] = loaded_label_encoder['Change_Wht_Eng_to_Gia_value'].inverse_transform(dx['Change_Wht_Eng_to_Gia_value'])
|
376 |
dx['Change_Open_Eng_to_Gia_value'] = loaded_label_encoder['Change_Open_Eng_to_Gia_value'].inverse_transform(dx['Change_Open_Eng_to_Gia_value'])
|
377 |
dx['Change_Pav_Eng_to_Gia_value'] = loaded_label_encoder['Change_Pav_Eng_to_Gia_value'].inverse_transform(dx['Change_Pav_Eng_to_Gia_value'])
|
378 |
-
|
|
|
|
|
379 |
# Final return with full data for pagination.
|
380 |
-
return df_pred,
|
381 |
except Exception as e:
|
382 |
print(f'Error processing file: {e}', 'error')
|
383 |
return pd.DataFrame(), pd.DataFrame()
|
|
|
146 |
|
147 |
|
148 |
# Classification models loaded using joblib.
|
149 |
+
'''
|
150 |
col_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_col.joblib'))
|
151 |
cts_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cts.joblib'))
|
152 |
cut_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cut.joblib'))
|
|
|
169 |
wht_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_wht.joblib'))
|
170 |
open_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_open.joblib'))
|
171 |
pav_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_pav.joblib'))
|
172 |
+
'''
|
173 |
+
|
174 |
|
175 |
# List of label encoder names.
|
176 |
encoder_list = [
|
|
|
325 |
# -------------------------
|
326 |
# Classification Report Section
|
327 |
# -------------------------
|
328 |
+
'''
|
329 |
try:
|
330 |
x2 = df_class.copy()
|
331 |
dx = df_pred.copy() # Start with the prediction data.
|
|
|
379 |
dx['Change_Wht_Eng_to_Gia_value'] = loaded_label_encoder['Change_Wht_Eng_to_Gia_value'].inverse_transform(dx['Change_Wht_Eng_to_Gia_value'])
|
380 |
dx['Change_Open_Eng_to_Gia_value'] = loaded_label_encoder['Change_Open_Eng_to_Gia_value'].inverse_transform(dx['Change_Open_Eng_to_Gia_value'])
|
381 |
dx['Change_Pav_Eng_to_Gia_value'] = loaded_label_encoder['Change_Pav_Eng_to_Gia_value'].inverse_transform(dx['Change_Pav_Eng_to_Gia_value'])
|
382 |
+
|
383 |
+
'''
|
384 |
+
|
385 |
# Final return with full data for pagination.
|
386 |
+
return df_pred, df_pred
|
387 |
except Exception as e:
|
388 |
print(f'Error processing file: {e}', 'error')
|
389 |
return pd.DataFrame(), pd.DataFrame()
|