WebashalarForML commited on
Commit
6863f8a
·
verified ·
1 Parent(s): 33f43e8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -2
app.py CHANGED
@@ -146,6 +146,7 @@ print("mkble_amt_class_model type:", type(mkble_amt_class_model))
146
 
147
 
148
  # Classification models loaded using joblib.
 
149
  col_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_col.joblib'))
150
  cts_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cts.joblib'))
151
  cut_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cut.joblib'))
@@ -168,6 +169,8 @@ blk_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegr
168
  wht_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_wht.joblib'))
169
  open_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_open.joblib'))
170
  pav_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_pav.joblib'))
 
 
171
 
172
  # List of label encoder names.
173
  encoder_list = [
@@ -322,6 +325,7 @@ def process_dataframe(df):
322
  # -------------------------
323
  # Classification Report Section
324
  # -------------------------
 
325
  try:
326
  x2 = df_class.copy()
327
  dx = df_pred.copy() # Start with the prediction data.
@@ -375,9 +379,11 @@ def process_dataframe(df):
375
  dx['Change_Wht_Eng_to_Gia_value'] = loaded_label_encoder['Change_Wht_Eng_to_Gia_value'].inverse_transform(dx['Change_Wht_Eng_to_Gia_value'])
376
  dx['Change_Open_Eng_to_Gia_value'] = loaded_label_encoder['Change_Open_Eng_to_Gia_value'].inverse_transform(dx['Change_Open_Eng_to_Gia_value'])
377
  dx['Change_Pav_Eng_to_Gia_value'] = loaded_label_encoder['Change_Pav_Eng_to_Gia_value'].inverse_transform(dx['Change_Pav_Eng_to_Gia_value'])
378
-
 
 
379
  # Final return with full data for pagination.
380
- return df_pred, dx.head(len(df_pred))
381
  except Exception as e:
382
  print(f'Error processing file: {e}', 'error')
383
  return pd.DataFrame(), pd.DataFrame()
 
146
 
147
 
148
  # Classification models loaded using joblib.
149
+ '''
150
  col_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_col.joblib'))
151
  cts_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cts.joblib'))
152
  cut_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cut.joblib'))
 
169
  wht_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_wht.joblib'))
170
  open_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_open.joblib'))
171
  pav_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_pav.joblib'))
172
+ '''
173
+
174
 
175
  # List of label encoder names.
176
  encoder_list = [
 
325
  # -------------------------
326
  # Classification Report Section
327
  # -------------------------
328
+ '''
329
  try:
330
  x2 = df_class.copy()
331
  dx = df_pred.copy() # Start with the prediction data.
 
379
  dx['Change_Wht_Eng_to_Gia_value'] = loaded_label_encoder['Change_Wht_Eng_to_Gia_value'].inverse_transform(dx['Change_Wht_Eng_to_Gia_value'])
380
  dx['Change_Open_Eng_to_Gia_value'] = loaded_label_encoder['Change_Open_Eng_to_Gia_value'].inverse_transform(dx['Change_Open_Eng_to_Gia_value'])
381
  dx['Change_Pav_Eng_to_Gia_value'] = loaded_label_encoder['Change_Pav_Eng_to_Gia_value'].inverse_transform(dx['Change_Pav_Eng_to_Gia_value'])
382
+
383
+ '''
384
+
385
  # Final return with full data for pagination.
386
+ return df_pred, df_pred
387
  except Exception as e:
388
  print(f'Error processing file: {e}', 'error')
389
  return pd.DataFrame(), pd.DataFrame()