Update app.py
Browse files
app.py
CHANGED
@@ -48,6 +48,8 @@ UPLOAD_FOLDER = "uploads/"
|
|
48 |
DATA_FOLDER = "data/"
|
49 |
MODEL_FOLDER = "models/"
|
50 |
|
|
|
|
|
51 |
# Define the model directory and label encoder directory
|
52 |
MODEL_DIR = r'./Model'
|
53 |
LABEL_ENCODER_DIR = r'./Label_encoders' # Renamed for clarity
|
@@ -77,37 +79,44 @@ os.makedirs(app.config['MODEL_FOLDER'], exist_ok=True)
|
|
77 |
# ------------------------------
|
78 |
|
79 |
# Prediction analysis models loaded from Hugging Face.
|
80 |
-
|
81 |
repo_id="WebashalarForML/Diamond_model_",
|
82 |
filename="models_list/mkble/StackingRegressor_best_pipeline_mkble_0_to_1.01.pkl",
|
83 |
cache_dir=MODEL_FOLDER
|
84 |
)
|
85 |
-
|
86 |
-
|
|
|
87 |
|
88 |
-
|
89 |
repo_id="WebashalarForML/Diamond_model_",
|
90 |
filename="models_list/grd/StackingRegressor_best_pipeline_grd_0_to_1.01.pkl",
|
91 |
cache_dir=MODEL_FOLDER
|
92 |
)
|
93 |
-
|
94 |
-
|
|
|
|
|
95 |
|
96 |
-
|
97 |
repo_id="WebashalarForML/Diamond_model_",
|
98 |
filename="models_list/bygrad/StackingRegressor_best_pipeline_bygrad_0_to_1.01.pkl",
|
99 |
cache_dir=MODEL_FOLDER
|
100 |
)
|
101 |
-
|
102 |
-
|
|
|
|
|
103 |
|
104 |
-
|
105 |
repo_id="WebashalarForML/Diamond_model_",
|
106 |
filename="models_list/gia/StackingRegressor_best_pipeline_gia_0_to_1.01.pkl",
|
107 |
cache_dir=MODEL_FOLDER
|
108 |
)
|
109 |
-
|
110 |
-
|
|
|
|
|
111 |
|
112 |
|
113 |
print("makable_model type:", type(makable_model))
|
@@ -115,10 +124,10 @@ print("grade_model type:", type(grade_model))
|
|
115 |
print("bygrade_model type:", type(bygrade_model))
|
116 |
print("gia_model type:", type(gia_model))
|
117 |
|
118 |
-
gia_model = load("models/StackingRegressor_best_pipeline_mkble_0_to_1.01.pkl")
|
119 |
-
grade_model = load("models/StackingRegressor_best_pipeline_grd_0_to_1.01.pkl")
|
120 |
-
bygrade_model = load("models/StackingRegressor_best_pipeline_bygrad_0_to_1.01.pkl")
|
121 |
-
makable_model = load("models/StackingRegressor_best_pipeline_gia_0_to_1.01.pkl")
|
122 |
|
123 |
|
124 |
# Classification models loaded using joblib.
|
|
|
48 |
DATA_FOLDER = "data/"
|
49 |
MODEL_FOLDER = "models/"
|
50 |
|
51 |
+
os.makedirs(MODEL_FOLDER, exist_ok=True)
|
52 |
+
|
53 |
# Define the model directory and label encoder directory
|
54 |
MODEL_DIR = r'./Model'
|
55 |
LABEL_ENCODER_DIR = r'./Label_encoders' # Renamed for clarity
|
|
|
79 |
# ------------------------------
|
80 |
|
81 |
# Prediction analysis models loaded from Hugging Face.
|
82 |
+
src_path = hf_hub_download(
|
83 |
repo_id="WebashalarForML/Diamond_model_",
|
84 |
filename="models_list/mkble/StackingRegressor_best_pipeline_mkble_0_to_1.01.pkl",
|
85 |
cache_dir=MODEL_FOLDER
|
86 |
)
|
87 |
+
dst_path = os.path.join(MODEL_FOLDER, "StackingRegressor_best_pipeline_mkble_0_to_1.01.pkl")
|
88 |
+
shutil.copy(src_path, dst_path)
|
89 |
+
makable_model = load(dst_path)
|
90 |
|
91 |
+
src_path = hf_hub_download(
|
92 |
repo_id="WebashalarForML/Diamond_model_",
|
93 |
filename="models_list/grd/StackingRegressor_best_pipeline_grd_0_to_1.01.pkl",
|
94 |
cache_dir=MODEL_FOLDER
|
95 |
)
|
96 |
+
dst_path = os.path.join(MODEL_FOLDER, "StackingRegressor_best_pipeline_grd_0_to_1.01.pkl")
|
97 |
+
shutil.copy(src_path, dst_path)
|
98 |
+
grade_model = load(dst_path)
|
99 |
+
|
100 |
|
101 |
+
src_path = hf_hub_download(
|
102 |
repo_id="WebashalarForML/Diamond_model_",
|
103 |
filename="models_list/bygrad/StackingRegressor_best_pipeline_bygrad_0_to_1.01.pkl",
|
104 |
cache_dir=MODEL_FOLDER
|
105 |
)
|
106 |
+
dst_path = os.path.join(MODEL_FOLDER, "StackingRegressor_best_pipeline_bygrad_0_to_1.01.pkl")
|
107 |
+
shutil.copy(src_path, dst_path)
|
108 |
+
bygrade_model = load(dst_path)
|
109 |
+
|
110 |
|
111 |
+
src_path = hf_hub_download(
|
112 |
repo_id="WebashalarForML/Diamond_model_",
|
113 |
filename="models_list/gia/StackingRegressor_best_pipeline_gia_0_to_1.01.pkl",
|
114 |
cache_dir=MODEL_FOLDER
|
115 |
)
|
116 |
+
dst_path = os.path.join(MODEL_FOLDER, "StackingRegressor_best_pipeline_gia_0_to_1.01.pkl")
|
117 |
+
shutil.copy(src_path, dst_path)
|
118 |
+
gia_model = load(dst_path)
|
119 |
+
|
120 |
|
121 |
|
122 |
print("makable_model type:", type(makable_model))
|
|
|
124 |
print("bygrade_model type:", type(bygrade_model))
|
125 |
print("gia_model type:", type(gia_model))
|
126 |
|
127 |
+
#gia_model = load("models/StackingRegressor_best_pipeline_mkble_0_to_1.01.pkl")
|
128 |
+
#grade_model = load("models/StackingRegressor_best_pipeline_grd_0_to_1.01.pkl")
|
129 |
+
#bygrade_model = load("models/StackingRegressor_best_pipeline_bygrad_0_to_1.01.pkl")
|
130 |
+
#makable_model = load("models/StackingRegressor_best_pipeline_gia_0_to_1.01.pkl")
|
131 |
|
132 |
|
133 |
# Classification models loaded using joblib.
|