Update app.py
Browse files
app.py
CHANGED
@@ -2,13 +2,14 @@ from flask import Flask, render_template, request, redirect, url_for, flash, sen
|
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
from werkzeug.utils import secure_filename
|
5 |
-
from joblib import load
|
6 |
import numpy as np
|
7 |
from sklearn.preprocessing import LabelEncoder
|
8 |
from time import time
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
import pickle
|
11 |
-
import
|
|
|
12 |
|
13 |
app = Flask(__name__)
|
14 |
|
@@ -22,22 +23,25 @@ MODEL_FOLDER = "models/"
|
|
22 |
|
23 |
# Define the model directory and label encoder directory
|
24 |
MODEL_DIR = r'./Model'
|
25 |
-
|
26 |
|
27 |
# Global file names for outputs; these will be updated per prediction.
|
28 |
-
|
29 |
-
|
|
|
30 |
|
31 |
ALLOWED_EXTENSIONS = {'csv', 'xlsx'}
|
32 |
|
|
|
33 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
34 |
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
|
35 |
|
36 |
-
app.config['DATA_FOLDER'] =
|
37 |
os.makedirs(app.config['DATA_FOLDER'], exist_ok=True)
|
|
|
38 |
os.makedirs("data", exist_ok=True)
|
39 |
|
40 |
-
app.config['MODEL_FOLDER'] =
|
41 |
os.makedirs(app.config['MODEL_FOLDER'], exist_ok=True)
|
42 |
|
43 |
|
@@ -45,14 +49,12 @@ os.makedirs(app.config['MODEL_FOLDER'], exist_ok=True)
|
|
45 |
# Load Models and Label Encoders
|
46 |
# ------------------------------
|
47 |
|
48 |
-
#
|
49 |
-
# Download the model file to the specified location
|
50 |
file_path_1 = hf_hub_download(
|
51 |
repo_id="WebashalarForML/Diamond_model_",
|
52 |
filename="models_list/mkble/StackingRegressor_best_pipeline_mkble_0_to_1.01.pkl",
|
53 |
cache_dir=MODEL_FOLDER
|
54 |
)
|
55 |
-
|
56 |
with open(file_path_1, "rb") as f:
|
57 |
makable_model = pickle.load(f)
|
58 |
|
@@ -61,7 +63,6 @@ file_path_2 = hf_hub_download(
|
|
61 |
filename="models_list/grd/StackingRegressor_best_pipeline_grd_0_to_1.01.pkl",
|
62 |
cache_dir=MODEL_FOLDER
|
63 |
)
|
64 |
-
|
65 |
with open(file_path_2, "rb") as f:
|
66 |
grade_model = pickle.load(f)
|
67 |
|
@@ -70,7 +71,6 @@ file_path_3 = hf_hub_download(
|
|
70 |
filename="models_list/bygrad/StackingRegressor_best_pipeline_bygrad_0_to_1.01.pkl",
|
71 |
cache_dir=MODEL_FOLDER
|
72 |
)
|
73 |
-
|
74 |
with open(file_path_3, "rb") as f:
|
75 |
bygrade_model = pickle.load(f)
|
76 |
|
@@ -79,16 +79,10 @@ file_path_4 = hf_hub_download(
|
|
79 |
filename="models_list/gia/StackingRegressor_best_pipeline_gia_0_to_1.01.pkl",
|
80 |
cache_dir=MODEL_FOLDER
|
81 |
)
|
82 |
-
|
83 |
with open(file_path_4, "rb") as f:
|
84 |
gia_model = pickle.load(f)
|
85 |
|
86 |
-
#
|
87 |
-
#grade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_grade_price.joblib'))
|
88 |
-
#bygrade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_bygrade_price.joblib'))
|
89 |
-
#makable_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_makable_price.joblib'))
|
90 |
-
|
91 |
-
# classifcation analysis
|
92 |
col_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_col.joblib'))
|
93 |
cts_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cts.joblib'))
|
94 |
cut_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cut.joblib'))
|
@@ -112,20 +106,25 @@ wht_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegr
|
|
112 |
open_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_open.joblib'))
|
113 |
pav_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_pav.joblib'))
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
125 |
loaded_label_encoder = {}
|
|
|
126 |
for val in encoder_list:
|
127 |
-
|
128 |
-
loaded_label_encoder[val] = load(
|
129 |
|
130 |
# ------------------------------
|
131 |
# Utility: Allowed File Check
|
@@ -144,12 +143,12 @@ def index():
|
|
144 |
def predict():
|
145 |
if 'file' not in request.files:
|
146 |
flash('No file part', 'error')
|
147 |
-
return redirect(
|
148 |
|
149 |
file = request.files['file']
|
150 |
if file.filename == '':
|
151 |
flash('No selected file', 'error')
|
152 |
-
return redirect(
|
153 |
|
154 |
if file and allowed_file(file.filename):
|
155 |
filename = secure_filename(file.filename)
|
@@ -157,23 +156,27 @@ def predict():
|
|
157 |
file.save(filepath)
|
158 |
|
159 |
# Convert file to DataFrame
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
|
|
164 |
|
165 |
# Process the DataFrame and generate predictions and classification analysis.
|
166 |
df_pred, dx_class = process_dataframe(df)
|
167 |
if df_pred.empty:
|
168 |
-
|
169 |
-
return redirect(
|
170 |
-
|
171 |
|
172 |
-
# Save output files with a timestamp
|
173 |
current_date = pd.Timestamp.now().strftime("%Y-%m-%d")
|
|
|
174 |
global PRED_OUTPUT_FILE, CLASS_OUTPUT_FILE
|
175 |
-
PRED_OUTPUT_FILE = f'data/prediction_output_{current_date}.csv'
|
176 |
-
CLASS_OUTPUT_FILE = f'data/classification_output_{current_date}.csv'
|
177 |
df_pred.to_csv(PRED_OUTPUT_FILE, index=False)
|
178 |
dx_class.to_csv(CLASS_OUTPUT_FILE, index=False)
|
179 |
|
@@ -181,11 +184,11 @@ def predict():
|
|
181 |
return redirect(url_for('report_view', report_type='pred', page=1))
|
182 |
else:
|
183 |
flash('Invalid file type. Only CSV and Excel files are allowed.', 'error')
|
184 |
-
return redirect(
|
185 |
|
186 |
def process_dataframe(df):
|
187 |
try:
|
188 |
-
# Define the columns needed for two parts
|
189 |
required_columns = ['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut',
|
190 |
'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngAmt']
|
191 |
required_columns_2 = required_columns + ['EngBlk', 'EngWht', 'EngOpen', 'EngPav']
|
@@ -196,7 +199,11 @@ def process_dataframe(df):
|
|
196 |
|
197 |
# Transform categorical columns for prediction DataFrame using the label encoders.
|
198 |
for col in ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly']:
|
199 |
-
|
|
|
|
|
|
|
|
|
200 |
|
201 |
# Update the classification DataFrame with the transformed prediction columns.
|
202 |
for col in ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly']:
|
@@ -204,16 +211,19 @@ def process_dataframe(df):
|
|
204 |
|
205 |
# Transform the extra columns in the classification DataFrame.
|
206 |
for col in ['EngBlk', 'EngWht', 'EngOpen', 'EngPav']:
|
207 |
-
|
|
|
|
|
|
|
|
|
208 |
|
209 |
-
# Convert both DataFrames to float
|
210 |
df_pred = df_pred.astype(float)
|
211 |
df_class = df_class.astype(float)
|
212 |
|
213 |
# -------------------------
|
214 |
# Prediction Report Section
|
215 |
# -------------------------
|
216 |
-
# Use the prediction DataFrame for price predictions.
|
217 |
x = df_pred.copy()
|
218 |
df_pred['GIA_Predicted'] = gia_model.predict(x)
|
219 |
df_pred['Grade_Predicted'] = grade_model.predict(x)
|
@@ -227,7 +237,6 @@ def process_dataframe(df):
|
|
227 |
# -------------------------
|
228 |
# Classification Report Section
|
229 |
# -------------------------
|
230 |
-
# For classification, use df_class (which has extra columns).
|
231 |
x2 = df_class.copy()
|
232 |
dx = df_pred.copy() # Start with the prediction data.
|
233 |
dx['col_change'] = col_model.predict(x)
|
@@ -275,7 +284,8 @@ def process_dataframe(df):
|
|
275 |
dx['Change_Open_Eng_to_Gia_value'] = loaded_label_encoder['Change_Open_Eng_to_Gia_value'].inverse_transform(dx['Change_Open_Eng_to_Gia_value'])
|
276 |
dx['Change_Pav_Eng_to_Gia_value'] = loaded_label_encoder['Change_Pav_Eng_to_Gia_value'].inverse_transform(dx['Change_Pav_Eng_to_Gia_value'])
|
277 |
|
278 |
-
|
|
|
279 |
except Exception as e:
|
280 |
flash(f'Error processing file: {e}', 'error')
|
281 |
return pd.DataFrame(), pd.DataFrame()
|
@@ -285,30 +295,26 @@ def process_dataframe(df):
|
|
285 |
# ------------------------------
|
286 |
@app.route('/report')
|
287 |
def report_view():
|
288 |
-
# Get query parameters: report_type (pred or class) and page number.
|
289 |
report_type = request.args.get('report_type', 'pred')
|
290 |
try:
|
291 |
page = int(request.args.get('page', 1))
|
292 |
except ValueError:
|
293 |
page = 1
|
294 |
per_page = 15 # records per page
|
295 |
-
|
296 |
# Read the appropriate CSV file.
|
297 |
if report_type == 'pred':
|
298 |
df = pd.read_csv(PRED_OUTPUT_FILE)
|
299 |
else:
|
300 |
df = pd.read_csv(CLASS_OUTPUT_FILE)
|
301 |
-
|
302 |
-
# Calculate pagination indices.
|
303 |
start_idx = (page - 1) * per_page
|
304 |
end_idx = start_idx + per_page
|
305 |
total_records = len(df)
|
306 |
|
307 |
-
# Slice the DataFrame for the current page.
|
308 |
df_page = df.iloc[start_idx:end_idx]
|
309 |
table_html = df_page.to_html(classes="data-table", index=False)
|
310 |
|
311 |
-
# Determine if previous/next pages exist.
|
312 |
has_prev = page > 1
|
313 |
has_next = end_idx < total_records
|
314 |
|
@@ -320,7 +326,7 @@ def report_view():
|
|
320 |
has_next=has_next)
|
321 |
|
322 |
# ------------------------------
|
323 |
-
# Download Routes
|
324 |
# ------------------------------
|
325 |
@app.route('/download_pred', methods=['GET'])
|
326 |
def download_pred():
|
|
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
from werkzeug.utils import secure_filename
|
5 |
+
from joblib import load, dump
|
6 |
import numpy as np
|
7 |
from sklearn.preprocessing import LabelEncoder
|
8 |
from time import time
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
import pickle
|
11 |
+
import uuid
|
12 |
+
from pathlib import Path
|
13 |
|
14 |
app = Flask(__name__)
|
15 |
|
|
|
23 |
|
24 |
# Define the model directory and label encoder directory
|
25 |
MODEL_DIR = r'./Model'
|
26 |
+
LABEL_ENCODER_DIR = r'./Label_encoders' # Renamed for clarity
|
27 |
|
28 |
# Global file names for outputs; these will be updated per prediction.
|
29 |
+
# Note: we now include a unique id to avoid overwriting.
|
30 |
+
PRED_OUTPUT_FILE = None
|
31 |
+
CLASS_OUTPUT_FILE = None
|
32 |
|
33 |
ALLOWED_EXTENSIONS = {'csv', 'xlsx'}
|
34 |
|
35 |
+
# Create directories if they do not exist.
|
36 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
37 |
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
|
38 |
|
39 |
+
app.config['DATA_FOLDER'] = DATA_FOLDER
|
40 |
os.makedirs(app.config['DATA_FOLDER'], exist_ok=True)
|
41 |
+
|
42 |
os.makedirs("data", exist_ok=True)
|
43 |
|
44 |
+
app.config['MODEL_FOLDER'] = MODEL_FOLDER
|
45 |
os.makedirs(app.config['MODEL_FOLDER'], exist_ok=True)
|
46 |
|
47 |
|
|
|
49 |
# Load Models and Label Encoders
|
50 |
# ------------------------------
|
51 |
|
52 |
+
# Prediction analysis models loaded from Hugging Face.
|
|
|
53 |
file_path_1 = hf_hub_download(
|
54 |
repo_id="WebashalarForML/Diamond_model_",
|
55 |
filename="models_list/mkble/StackingRegressor_best_pipeline_mkble_0_to_1.01.pkl",
|
56 |
cache_dir=MODEL_FOLDER
|
57 |
)
|
|
|
58 |
with open(file_path_1, "rb") as f:
|
59 |
makable_model = pickle.load(f)
|
60 |
|
|
|
63 |
filename="models_list/grd/StackingRegressor_best_pipeline_grd_0_to_1.01.pkl",
|
64 |
cache_dir=MODEL_FOLDER
|
65 |
)
|
|
|
66 |
with open(file_path_2, "rb") as f:
|
67 |
grade_model = pickle.load(f)
|
68 |
|
|
|
71 |
filename="models_list/bygrad/StackingRegressor_best_pipeline_bygrad_0_to_1.01.pkl",
|
72 |
cache_dir=MODEL_FOLDER
|
73 |
)
|
|
|
74 |
with open(file_path_3, "rb") as f:
|
75 |
bygrade_model = pickle.load(f)
|
76 |
|
|
|
79 |
filename="models_list/gia/StackingRegressor_best_pipeline_gia_0_to_1.01.pkl",
|
80 |
cache_dir=MODEL_FOLDER
|
81 |
)
|
|
|
82 |
with open(file_path_4, "rb") as f:
|
83 |
gia_model = pickle.load(f)
|
84 |
|
85 |
+
# Classification models loaded using joblib.
|
|
|
|
|
|
|
|
|
|
|
86 |
col_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_col.joblib'))
|
87 |
cts_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cts.joblib'))
|
88 |
cut_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cut.joblib'))
|
|
|
106 |
open_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_open.joblib'))
|
107 |
pav_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_pav.joblib'))
|
108 |
|
109 |
+
# List of label encoder names.
|
110 |
+
encoder_list = [
|
111 |
+
'Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo',
|
112 |
+
'EngNts', 'EngMikly', 'EngLab','EngBlk', 'EngWht', 'EngOpen','EngPav',
|
113 |
+
'Change_cts_value', 'Change_shape_value', 'Change_quality_value', 'Change_color_value',
|
114 |
+
'Change_cut_value', 'Change_Blk_Eng_to_Mkbl_value', 'Change_Wht_Eng_to_Mkbl_value',
|
115 |
+
'Change_Open_Eng_to_Mkbl_value', 'Change_Pav_Eng_to_Mkbl_value', 'Change_Blk_Eng_to_Grd_value',
|
116 |
+
'Change_Wht_Eng_to_Grd_value', 'Change_Open_Eng_to_Grd_value', 'Change_Pav_Eng_to_Grd_value',
|
117 |
+
'Change_Blk_Eng_to_ByGrd_value', 'Change_Wht_Eng_to_ByGrd_value', 'Change_Open_Eng_to_ByGrd_value',
|
118 |
+
'Change_Pav_Eng_to_ByGrd_value', 'Change_Blk_Eng_to_Gia_value', 'Change_Wht_Eng_to_Gia_value',
|
119 |
+
'Change_Open_Eng_to_Gia_value', 'Change_Pav_Eng_to_Gia_value'
|
120 |
+
]
|
121 |
+
|
122 |
+
# Load label encoders using pathlib for cleaner path management.
|
123 |
loaded_label_encoder = {}
|
124 |
+
enc_path = Path(LABEL_ENCODER_DIR)
|
125 |
for val in encoder_list:
|
126 |
+
encoder_file = enc_path / f"label_encoder_{val}.joblib"
|
127 |
+
loaded_label_encoder[val] = load(encoder_file)
|
128 |
|
129 |
# ------------------------------
|
130 |
# Utility: Allowed File Check
|
|
|
143 |
def predict():
|
144 |
if 'file' not in request.files:
|
145 |
flash('No file part', 'error')
|
146 |
+
return redirect(url_for('index'))
|
147 |
|
148 |
file = request.files['file']
|
149 |
if file.filename == '':
|
150 |
flash('No selected file', 'error')
|
151 |
+
return redirect(url_for('index'))
|
152 |
|
153 |
if file and allowed_file(file.filename):
|
154 |
filename = secure_filename(file.filename)
|
|
|
156 |
file.save(filepath)
|
157 |
|
158 |
# Convert file to DataFrame
|
159 |
+
try:
|
160 |
+
if filename.endswith('.csv'):
|
161 |
+
df = pd.read_csv(filepath)
|
162 |
+
else:
|
163 |
+
df = pd.read_excel(filepath)
|
164 |
+
except Exception as e:
|
165 |
+
flash(f'Error reading file: {e}', 'error')
|
166 |
+
return redirect(url_for('index'))
|
167 |
|
168 |
# Process the DataFrame and generate predictions and classification analysis.
|
169 |
df_pred, dx_class = process_dataframe(df)
|
170 |
if df_pred.empty:
|
171 |
+
flash("Processed prediction DataFrame is empty. Check the input file and processing logic.", "error")
|
172 |
+
return redirect(url_for('index'))
|
|
|
173 |
|
174 |
+
# Save output files with a timestamp and unique id.
|
175 |
current_date = pd.Timestamp.now().strftime("%Y-%m-%d")
|
176 |
+
unique_id = uuid.uuid4().hex[:8]
|
177 |
global PRED_OUTPUT_FILE, CLASS_OUTPUT_FILE
|
178 |
+
PRED_OUTPUT_FILE = f'data/prediction_output_{current_date}_{unique_id}.csv'
|
179 |
+
CLASS_OUTPUT_FILE = f'data/classification_output_{current_date}_{unique_id}.csv'
|
180 |
df_pred.to_csv(PRED_OUTPUT_FILE, index=False)
|
181 |
dx_class.to_csv(CLASS_OUTPUT_FILE, index=False)
|
182 |
|
|
|
184 |
return redirect(url_for('report_view', report_type='pred', page=1))
|
185 |
else:
|
186 |
flash('Invalid file type. Only CSV and Excel files are allowed.', 'error')
|
187 |
+
return redirect(url_for('index'))
|
188 |
|
189 |
def process_dataframe(df):
|
190 |
try:
|
191 |
+
# Define the columns needed for two parts.
|
192 |
required_columns = ['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut',
|
193 |
'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngAmt']
|
194 |
required_columns_2 = required_columns + ['EngBlk', 'EngWht', 'EngOpen', 'EngPav']
|
|
|
199 |
|
200 |
# Transform categorical columns for prediction DataFrame using the label encoders.
|
201 |
for col in ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly']:
|
202 |
+
try:
|
203 |
+
df_pred[col] = loaded_label_encoder[col].transform(df_pred[col])
|
204 |
+
except ValueError as e:
|
205 |
+
flash(f'Invalid value in column {col}: {e}', 'error')
|
206 |
+
return pd.DataFrame(), pd.DataFrame()
|
207 |
|
208 |
# Update the classification DataFrame with the transformed prediction columns.
|
209 |
for col in ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly']:
|
|
|
211 |
|
212 |
# Transform the extra columns in the classification DataFrame.
|
213 |
for col in ['EngBlk', 'EngWht', 'EngOpen', 'EngPav']:
|
214 |
+
try:
|
215 |
+
df_class[col] = loaded_label_encoder[col].transform(df_class[col])
|
216 |
+
except ValueError as e:
|
217 |
+
flash(f'Invalid value in column {col}: {e}', 'error')
|
218 |
+
return pd.DataFrame(), pd.DataFrame()
|
219 |
|
220 |
+
# Convert both DataFrames to float.
|
221 |
df_pred = df_pred.astype(float)
|
222 |
df_class = df_class.astype(float)
|
223 |
|
224 |
# -------------------------
|
225 |
# Prediction Report Section
|
226 |
# -------------------------
|
|
|
227 |
x = df_pred.copy()
|
228 |
df_pred['GIA_Predicted'] = gia_model.predict(x)
|
229 |
df_pred['Grade_Predicted'] = grade_model.predict(x)
|
|
|
237 |
# -------------------------
|
238 |
# Classification Report Section
|
239 |
# -------------------------
|
|
|
240 |
x2 = df_class.copy()
|
241 |
dx = df_pred.copy() # Start with the prediction data.
|
242 |
dx['col_change'] = col_model.predict(x)
|
|
|
284 |
dx['Change_Open_Eng_to_Gia_value'] = loaded_label_encoder['Change_Open_Eng_to_Gia_value'].inverse_transform(dx['Change_Open_Eng_to_Gia_value'])
|
285 |
dx['Change_Pav_Eng_to_Gia_value'] = loaded_label_encoder['Change_Pav_Eng_to_Gia_value'].inverse_transform(dx['Change_Pav_Eng_to_Gia_value'])
|
286 |
|
287 |
+
# Final return with full data for pagination.
|
288 |
+
return df_pred, dx.head(len(df_pred))
|
289 |
except Exception as e:
|
290 |
flash(f'Error processing file: {e}', 'error')
|
291 |
return pd.DataFrame(), pd.DataFrame()
|
|
|
295 |
# ------------------------------
|
296 |
@app.route('/report')
|
297 |
def report_view():
|
|
|
298 |
report_type = request.args.get('report_type', 'pred')
|
299 |
try:
|
300 |
page = int(request.args.get('page', 1))
|
301 |
except ValueError:
|
302 |
page = 1
|
303 |
per_page = 15 # records per page
|
304 |
+
|
305 |
# Read the appropriate CSV file.
|
306 |
if report_type == 'pred':
|
307 |
df = pd.read_csv(PRED_OUTPUT_FILE)
|
308 |
else:
|
309 |
df = pd.read_csv(CLASS_OUTPUT_FILE)
|
310 |
+
|
|
|
311 |
start_idx = (page - 1) * per_page
|
312 |
end_idx = start_idx + per_page
|
313 |
total_records = len(df)
|
314 |
|
|
|
315 |
df_page = df.iloc[start_idx:end_idx]
|
316 |
table_html = df_page.to_html(classes="data-table", index=False)
|
317 |
|
|
|
318 |
has_prev = page > 1
|
319 |
has_next = end_idx < total_records
|
320 |
|
|
|
326 |
has_next=has_next)
|
327 |
|
328 |
# ------------------------------
|
329 |
+
# Download Routes
|
330 |
# ------------------------------
|
331 |
@app.route('/download_pred', methods=['GET'])
|
332 |
def download_pred():
|