WebashalarForML commited on
Commit
f6edb7c
·
verified ·
1 Parent(s): 0e7a640

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -252,6 +252,8 @@ def predict():
252
 
253
  def process_dataframe(df):
254
  try:
 
 
255
  # Define the columns needed for two parts.
256
  required_columns = ['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
257
  'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngBlk', 'EngWht', 'EngOpen',
@@ -261,9 +263,7 @@ def process_dataframe(df):
261
 
262
  # Create two DataFrames: one for prediction and one for classification.
263
  df_pred = df[required_columns].copy()
264
- df_pred = df_pred[(df_pred[['EngCts']] > 0.00).all(axis=1) & (df_pred[['EngCts']] <= 0.99).all(axis=1)]
265
- df_pred[['EngBlk', 'EngWht', 'EngOpen', 'EngPav']]=df_pred[['EngBlk', 'EngWht', 'EngOpen', 'EngPav']].fillna("NA")
266
- df_pred = df_pred[(df_pred[['MkblAmt', 'GrdAmt', 'ByGrdAmt', 'GiaAmt', 'EngCts']] != 0).all(axis=1)]
267
  df_class = df[required_columns_2].fillna("NA").copy()
268
 
269
  # Transform categorical columns for prediction DataFrame using the label encoders.
 
252
 
253
  def process_dataframe(df):
254
  try:
255
+ df[['EngBlk', 'EngWht', 'EngOpen', 'EngPav']]=df[['EngBlk', 'EngWht', 'EngOpen', 'EngPav']].fillna("NA")
256
+
257
  # Define the columns needed for two parts.
258
  required_columns = ['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
259
  'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngBlk', 'EngWht', 'EngOpen',
 
263
 
264
  # Create two DataFrames: one for prediction and one for classification.
265
  df_pred = df[required_columns].copy()
266
+ df_pred = df_pred[(df_pred[['EngCts']] > 0.00).all(axis=1) & (df_pred[['EngCts']] <= 0.99).all(axis=1)]
 
 
267
  df_class = df[required_columns_2].fillna("NA").copy()
268
 
269
  # Transform categorical columns for prediction DataFrame using the label encoders.