Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,9 @@ from joblib import load
|
|
6 |
import numpy as np
|
7 |
from sklearn.preprocessing import LabelEncoder
|
8 |
from time import time
|
|
|
|
|
|
|
9 |
|
10 |
app = Flask(__name__)
|
11 |
|
@@ -15,6 +18,7 @@ app.secret_key = os.urandom(24)
|
|
15 |
# Configurations
|
16 |
UPLOAD_FOLDER = "uploads/"
|
17 |
DATA_FOLDER = "data/"
|
|
|
18 |
|
19 |
# Define the model directory and label encoder directory
|
20 |
MODEL_DIR = r'./Model'
|
@@ -29,14 +33,33 @@ ALLOWED_EXTENSIONS = {'csv', 'xlsx'}
|
|
29 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
30 |
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
# ------------------------------
|
33 |
# Load Models and Label Encoders
|
34 |
# ------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
gia_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_gia_price.joblib'))
|
36 |
grade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_grade_price.joblib'))
|
37 |
bygrade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_bygrade_price.joblib'))
|
38 |
makable_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_makable_price.joblib'))
|
39 |
|
|
|
40 |
col_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_col.joblib'))
|
41 |
cts_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cts.joblib'))
|
42 |
cut_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cut.joblib'))
|
|
|
6 |
import numpy as np
|
7 |
from sklearn.preprocessing import LabelEncoder
|
8 |
from time import time
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
+
import pickle
|
11 |
+
import os
|
12 |
|
13 |
app = Flask(__name__)
|
14 |
|
|
|
18 |
# Configurations
|
19 |
UPLOAD_FOLDER = "uploads/"
|
20 |
DATA_FOLDER = "data/"
|
21 |
+
MODEL_FOLDER = "models/"
|
22 |
|
23 |
# Define the model directory and label encoder directory
|
24 |
MODEL_DIR = r'./Model'
|
|
|
33 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
34 |
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
|
35 |
|
36 |
+
app.config['DATA_FOLDER'] = UPLOAD_FOLDER
|
37 |
+
os.makedirs(app.config['DATA_FOLDER'], exist_ok=True)
|
38 |
+
|
39 |
+
app.config['MODEL_FOLDER'] = UPLOAD_FOLDER
|
40 |
+
os.makedirs(app.config['MODEL_FOLDER'], exist_ok=True)
|
41 |
+
|
42 |
# ------------------------------
|
43 |
# Load Models and Label Encoders
|
44 |
# ------------------------------
|
45 |
+
|
46 |
+
# prediction analysis
|
47 |
+
# Download the model file to the specified location
|
48 |
+
file_path = hf_hub_download(
|
49 |
+
repo_id="WebashalarForML/Diamond_model_",
|
50 |
+
filename="models_list/bygrad/CatBoost_best_pipeline_BYGRADE.pkl",
|
51 |
+
cache_dir=specific_location
|
52 |
+
)
|
53 |
+
|
54 |
+
with open(file_path, "rb") as f:
|
55 |
+
model = pickle.load(f)
|
56 |
+
|
57 |
gia_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_gia_price.joblib'))
|
58 |
grade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_grade_price.joblib'))
|
59 |
bygrade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_bygrade_price.joblib'))
|
60 |
makable_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_makable_price.joblib'))
|
61 |
|
62 |
+
# classifcation analysis
|
63 |
col_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_col.joblib'))
|
64 |
cts_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cts.joblib'))
|
65 |
cut_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cut.joblib'))
|