Update app.py
Browse files
app.py
CHANGED
@@ -241,7 +241,8 @@ def process_dataframe(df):
|
|
241 |
required_columns = ['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
|
242 |
'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngBlk', 'EngWht', 'EngOpen',
|
243 |
'EngPav', 'EngAmt']
|
244 |
-
required_columns_2 =
|
|
|
245 |
|
246 |
# Create two DataFrames: one for prediction and one for classification.
|
247 |
df_pred = df[required_columns].copy()
|
@@ -294,22 +295,22 @@ def process_dataframe(df):
|
|
294 |
dx['cut_change'] = cut_model.predict(x)
|
295 |
dx['qua_change'] = qua_model.predict(x)
|
296 |
dx['shp_change'] = shp_model.predict(x)
|
297 |
-
dx['Change_Blk_Eng_to_Mkbl_value'] = blk_eng_to_mkbl_model.predict(
|
298 |
-
dx['Change_Wht_Eng_to_Mkbl_value'] = wht_eng_to_mkbl_model.predict(
|
299 |
-
dx['Change_Open_Eng_to_Mkbl_value'] = open_eng_to_mkbl_model.predict(
|
300 |
-
dx['Change_Pav_Eng_to_Mkbl_value'] = pav_eng_to_mkbl_model.predict(
|
301 |
-
dx['Change_Blk_Eng_to_Grd_value'] = blk_eng_to_grade_model.predict(
|
302 |
-
dx['Change_Wht_Eng_to_Grd_value'] = wht_eng_to_grade_model.predict(
|
303 |
-
dx['Change_Open_Eng_to_Grd_value'] = open_eng_to_grade_model.predict(
|
304 |
-
dx['Change_Pav_Eng_to_Grd_value'] = pav_eng_to_grade_model.predict(
|
305 |
-
dx['Change_Blk_Eng_to_ByGrd_value'] = blk_eng_to_bygrade_model.predict(
|
306 |
-
dx['Change_Wht_Eng_to_ByGrd_value'] = wht_eng_to_bygrade_model.predict(
|
307 |
-
dx['Change_Open_Eng_to_ByGrd_value'] = open_eng_to_bygrade_model.predict(
|
308 |
-
dx['Change_Pav_Eng_to_ByGrd_value'] = pav_eng_to_bygrade_model.predict(
|
309 |
-
dx['Change_Blk_Eng_to_Gia_value'] = blk_eng_to_gia_model.predict(
|
310 |
-
dx['Change_Wht_Eng_to_Gia_value'] = wht_eng_to_gia_model.predict(
|
311 |
-
dx['Change_Open_Eng_to_Gia_value'] = open_eng_to_gia_model.predict(
|
312 |
-
dx['Change_Pav_Eng_to_Gia_value'] = pav_eng_to_gia_model.predict(
|
313 |
|
314 |
# Inverse transform classification predictions.
|
315 |
dx['col_change'] = loaded_label_encoder['Change_color_value'].inverse_transform(dx['col_change'])
|
|
|
241 |
required_columns = ['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
|
242 |
'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngBlk', 'EngWht', 'EngOpen',
|
243 |
'EngPav', 'EngAmt']
|
244 |
+
required_columns_2 = ['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
|
245 |
+
'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngAmt']
|
246 |
|
247 |
# Create two DataFrames: one for prediction and one for classification.
|
248 |
df_pred = df[required_columns].copy()
|
|
|
295 |
dx['cut_change'] = cut_model.predict(x)
|
296 |
dx['qua_change'] = qua_model.predict(x)
|
297 |
dx['shp_change'] = shp_model.predict(x)
|
298 |
+
dx['Change_Blk_Eng_to_Mkbl_value'] = blk_eng_to_mkbl_model.predict(x)
|
299 |
+
dx['Change_Wht_Eng_to_Mkbl_value'] = wht_eng_to_mkbl_model.predict(x)
|
300 |
+
dx['Change_Open_Eng_to_Mkbl_value'] = open_eng_to_mkbl_model.predict(x)
|
301 |
+
dx['Change_Pav_Eng_to_Mkbl_value'] = pav_eng_to_mkbl_model.predict(x)
|
302 |
+
dx['Change_Blk_Eng_to_Grd_value'] = blk_eng_to_grade_model.predict(x)
|
303 |
+
dx['Change_Wht_Eng_to_Grd_value'] = wht_eng_to_grade_model.predict(x)
|
304 |
+
dx['Change_Open_Eng_to_Grd_value'] = open_eng_to_grade_model.predict(x)
|
305 |
+
dx['Change_Pav_Eng_to_Grd_value'] = pav_eng_to_grade_model.predict(x)
|
306 |
+
dx['Change_Blk_Eng_to_ByGrd_value'] = blk_eng_to_bygrade_model.predict(x)
|
307 |
+
dx['Change_Wht_Eng_to_ByGrd_value'] = wht_eng_to_bygrade_model.predict(x)
|
308 |
+
dx['Change_Open_Eng_to_ByGrd_value'] = open_eng_to_bygrade_model.predict(x)
|
309 |
+
dx['Change_Pav_Eng_to_ByGrd_value'] = pav_eng_to_bygrade_model.predict(x)
|
310 |
+
dx['Change_Blk_Eng_to_Gia_value'] = blk_eng_to_gia_model.predict(x)
|
311 |
+
dx['Change_Wht_Eng_to_Gia_value'] = wht_eng_to_gia_model.predict(x)
|
312 |
+
dx['Change_Open_Eng_to_Gia_value'] = open_eng_to_gia_model.predict(x)
|
313 |
+
dx['Change_Pav_Eng_to_Gia_value'] = pav_eng_to_gia_model.predict(x)
|
314 |
|
315 |
# Inverse transform classification predictions.
|
316 |
dx['col_change'] = loaded_label_encoder['Change_color_value'].inverse_transform(dx['col_change'])
|