WebashalarForML commited on
Commit
cb0345f
·
verified ·
1 Parent(s): 86bcd45

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -17
app.py CHANGED
@@ -241,7 +241,8 @@ def process_dataframe(df):
241
  required_columns = ['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
242
  'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngBlk', 'EngWht', 'EngOpen',
243
  'EngPav', 'EngAmt']
244
- required_columns_2 = required_columns + ['EngBlk', 'EngWht', 'EngOpen', 'EngPav']
 
245
 
246
  # Create two DataFrames: one for prediction and one for classification.
247
  df_pred = df[required_columns].copy()
@@ -294,22 +295,22 @@ def process_dataframe(df):
294
  dx['cut_change'] = cut_model.predict(x)
295
  dx['qua_change'] = qua_model.predict(x)
296
  dx['shp_change'] = shp_model.predict(x)
297
- dx['Change_Blk_Eng_to_Mkbl_value'] = blk_eng_to_mkbl_model.predict(x2)
298
- dx['Change_Wht_Eng_to_Mkbl_value'] = wht_eng_to_mkbl_model.predict(x2)
299
- dx['Change_Open_Eng_to_Mkbl_value'] = open_eng_to_mkbl_model.predict(x2)
300
- dx['Change_Pav_Eng_to_Mkbl_value'] = pav_eng_to_mkbl_model.predict(x2)
301
- dx['Change_Blk_Eng_to_Grd_value'] = blk_eng_to_grade_model.predict(x2)
302
- dx['Change_Wht_Eng_to_Grd_value'] = wht_eng_to_grade_model.predict(x2)
303
- dx['Change_Open_Eng_to_Grd_value'] = open_eng_to_grade_model.predict(x2)
304
- dx['Change_Pav_Eng_to_Grd_value'] = pav_eng_to_grade_model.predict(x2)
305
- dx['Change_Blk_Eng_to_ByGrd_value'] = blk_eng_to_bygrade_model.predict(x2)
306
- dx['Change_Wht_Eng_to_ByGrd_value'] = wht_eng_to_bygrade_model.predict(x2)
307
- dx['Change_Open_Eng_to_ByGrd_value'] = open_eng_to_bygrade_model.predict(x2)
308
- dx['Change_Pav_Eng_to_ByGrd_value'] = pav_eng_to_bygrade_model.predict(x2)
309
- dx['Change_Blk_Eng_to_Gia_value'] = blk_eng_to_gia_model.predict(x2)
310
- dx['Change_Wht_Eng_to_Gia_value'] = wht_eng_to_gia_model.predict(x2)
311
- dx['Change_Open_Eng_to_Gia_value'] = open_eng_to_gia_model.predict(x2)
312
- dx['Change_Pav_Eng_to_Gia_value'] = pav_eng_to_gia_model.predict(x2)
313
 
314
  # Inverse transform classification predictions.
315
  dx['col_change'] = loaded_label_encoder['Change_color_value'].inverse_transform(dx['col_change'])
 
241
  required_columns = ['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
242
  'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngBlk', 'EngWht', 'EngOpen',
243
  'EngPav', 'EngAmt']
244
+ required_columns_2 = ['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
245
+ 'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngAmt']
246
 
247
  # Create two DataFrames: one for prediction and one for classification.
248
  df_pred = df[required_columns].copy()
 
295
  dx['cut_change'] = cut_model.predict(x)
296
  dx['qua_change'] = qua_model.predict(x)
297
  dx['shp_change'] = shp_model.predict(x)
298
+ dx['Change_Blk_Eng_to_Mkbl_value'] = blk_eng_to_mkbl_model.predict(x)
299
+ dx['Change_Wht_Eng_to_Mkbl_value'] = wht_eng_to_mkbl_model.predict(x)
300
+ dx['Change_Open_Eng_to_Mkbl_value'] = open_eng_to_mkbl_model.predict(x)
301
+ dx['Change_Pav_Eng_to_Mkbl_value'] = pav_eng_to_mkbl_model.predict(x)
302
+ dx['Change_Blk_Eng_to_Grd_value'] = blk_eng_to_grade_model.predict(x)
303
+ dx['Change_Wht_Eng_to_Grd_value'] = wht_eng_to_grade_model.predict(x)
304
+ dx['Change_Open_Eng_to_Grd_value'] = open_eng_to_grade_model.predict(x)
305
+ dx['Change_Pav_Eng_to_Grd_value'] = pav_eng_to_grade_model.predict(x)
306
+ dx['Change_Blk_Eng_to_ByGrd_value'] = blk_eng_to_bygrade_model.predict(x)
307
+ dx['Change_Wht_Eng_to_ByGrd_value'] = wht_eng_to_bygrade_model.predict(x)
308
+ dx['Change_Open_Eng_to_ByGrd_value'] = open_eng_to_bygrade_model.predict(x)
309
+ dx['Change_Pav_Eng_to_ByGrd_value'] = pav_eng_to_bygrade_model.predict(x)
310
+ dx['Change_Blk_Eng_to_Gia_value'] = blk_eng_to_gia_model.predict(x)
311
+ dx['Change_Wht_Eng_to_Gia_value'] = wht_eng_to_gia_model.predict(x)
312
+ dx['Change_Open_Eng_to_Gia_value'] = open_eng_to_gia_model.predict(x)
313
+ dx['Change_Pav_Eng_to_Gia_value'] = pav_eng_to_gia_model.predict(x)
314
 
315
  # Inverse transform classification predictions.
316
  dx['col_change'] = loaded_label_encoder['Change_color_value'].inverse_transform(dx['col_change'])