File size: 18,931 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
"""
AST nodes specific to Fortran.

The functions defined in this module allows the user to express functions such as ``dsign``
as a SymPy function for symbolic manipulation.
"""

from sympy.codegen.ast import (
    Attribute, CodeBlock, FunctionCall, Node, none, String,
    Token, _mk_Tuple, Variable
)
from sympy.core.basic import Basic
from sympy.core.containers import Tuple
from sympy.core.expr import Expr
from sympy.core.function import Function
from sympy.core.numbers import Float, Integer
from sympy.core.symbol import Str
from sympy.core.sympify import sympify
from sympy.logic import true, false
from sympy.utilities.iterables import iterable



pure = Attribute('pure')
elemental = Attribute('elemental')  # (all elemental procedures are also pure)

intent_in = Attribute('intent_in')
intent_out = Attribute('intent_out')
intent_inout = Attribute('intent_inout')

allocatable = Attribute('allocatable')

class Program(Token):
    """ Represents a 'program' block in Fortran.

    Examples
    ========

    >>> from sympy.codegen.ast import Print
    >>> from sympy.codegen.fnodes import Program
    >>> prog = Program('myprogram', [Print([42])])
    >>> from sympy import fcode
    >>> print(fcode(prog, source_format='free'))
    program myprogram
        print *, 42
    end program

    """
    __slots__ = _fields = ('name', 'body')
    _construct_name = String
    _construct_body = staticmethod(lambda body: CodeBlock(*body))


class use_rename(Token):
    """ Represents a renaming in a use statement in Fortran.

    Examples
    ========

    >>> from sympy.codegen.fnodes import use_rename, use
    >>> from sympy import fcode
    >>> ren = use_rename("thingy", "convolution2d")
    >>> print(fcode(ren, source_format='free'))
    thingy => convolution2d
    >>> full = use('signallib', only=['snr', ren])
    >>> print(fcode(full, source_format='free'))
    use signallib, only: snr, thingy => convolution2d

    """
    __slots__ = _fields = ('local', 'original')
    _construct_local = String
    _construct_original = String

def _name(arg):
    if hasattr(arg, 'name'):
        return arg.name
    else:
        return String(arg)

class use(Token):
    """ Represents a use statement in Fortran.

    Examples
    ========

    >>> from sympy.codegen.fnodes import use
    >>> from sympy import fcode
    >>> fcode(use('signallib'), source_format='free')
    'use signallib'
    >>> fcode(use('signallib', [('metric', 'snr')]), source_format='free')
    'use signallib, metric => snr'
    >>> fcode(use('signallib', only=['snr', 'convolution2d']), source_format='free')
    'use signallib, only: snr, convolution2d'

    """
    __slots__ = _fields = ('namespace', 'rename', 'only')
    defaults = {'rename': none, 'only': none}
    _construct_namespace = staticmethod(_name)
    _construct_rename = staticmethod(lambda args: Tuple(*[arg if isinstance(arg, use_rename) else use_rename(*arg) for arg in args]))
    _construct_only = staticmethod(lambda args: Tuple(*[arg if isinstance(arg, use_rename) else _name(arg) for arg in args]))


class Module(Token):
    """ Represents a module in Fortran.

    Examples
    ========

    >>> from sympy.codegen.fnodes import Module
    >>> from sympy import fcode
    >>> print(fcode(Module('signallib', ['implicit none'], []), source_format='free'))
    module signallib
    implicit none
    <BLANKLINE>
    contains
    <BLANKLINE>
    <BLANKLINE>
    end module

    """
    __slots__ = _fields = ('name', 'declarations', 'definitions')
    defaults = {'declarations': Tuple()}
    _construct_name = String

    @classmethod
    def _construct_declarations(cls, args):
        args = [Str(arg) if isinstance(arg, str) else arg for arg in args]
        return CodeBlock(*args)

    _construct_definitions = staticmethod(lambda arg: CodeBlock(*arg))


class Subroutine(Node):
    """ Represents a subroutine in Fortran.

    Examples
    ========

    >>> from sympy import fcode, symbols
    >>> from sympy.codegen.ast import Print
    >>> from sympy.codegen.fnodes import Subroutine
    >>> x, y = symbols('x y', real=True)
    >>> sub = Subroutine('mysub', [x, y], [Print([x**2 + y**2, x*y])])
    >>> print(fcode(sub, source_format='free', standard=2003))
    subroutine mysub(x, y)
    real*8 :: x
    real*8 :: y
    print *, x**2 + y**2, x*y
    end subroutine

    """
    __slots__ = ('name', 'parameters', 'body')
    _fields = __slots__ + Node._fields
    _construct_name = String
    _construct_parameters = staticmethod(lambda params: Tuple(*map(Variable.deduced, params)))

    @classmethod
    def _construct_body(cls, itr):
        if isinstance(itr, CodeBlock):
            return itr
        else:
            return CodeBlock(*itr)

class SubroutineCall(Token):
    """ Represents a call to a subroutine in Fortran.

    Examples
    ========

    >>> from sympy.codegen.fnodes import SubroutineCall
    >>> from sympy import fcode
    >>> fcode(SubroutineCall('mysub', 'x y'.split()))
    '       call mysub(x, y)'

    """
    __slots__ = _fields = ('name', 'subroutine_args')
    _construct_name = staticmethod(_name)
    _construct_subroutine_args = staticmethod(_mk_Tuple)


class Do(Token):
    """ Represents a Do loop in in Fortran.

    Examples
    ========

    >>> from sympy import fcode, symbols
    >>> from sympy.codegen.ast import aug_assign, Print
    >>> from sympy.codegen.fnodes import Do
    >>> i, n = symbols('i n', integer=True)
    >>> r = symbols('r', real=True)
    >>> body = [aug_assign(r, '+', 1/i), Print([i, r])]
    >>> do1 = Do(body, i, 1, n)
    >>> print(fcode(do1, source_format='free'))
    do i = 1, n
        r = r + 1d0/i
        print *, i, r
    end do
    >>> do2 = Do(body, i, 1, n, 2)
    >>> print(fcode(do2, source_format='free'))
    do i = 1, n, 2
        r = r + 1d0/i
        print *, i, r
    end do

    """

    __slots__ = _fields = ('body', 'counter', 'first', 'last', 'step', 'concurrent')
    defaults = {'step': Integer(1), 'concurrent': false}
    _construct_body = staticmethod(lambda body: CodeBlock(*body))
    _construct_counter = staticmethod(sympify)
    _construct_first = staticmethod(sympify)
    _construct_last = staticmethod(sympify)
    _construct_step = staticmethod(sympify)
    _construct_concurrent = staticmethod(lambda arg: true if arg else false)


class ArrayConstructor(Token):
    """ Represents an array constructor.

    Examples
    ========

    >>> from sympy import fcode
    >>> from sympy.codegen.fnodes import ArrayConstructor
    >>> ac = ArrayConstructor([1, 2, 3])
    >>> fcode(ac, standard=95, source_format='free')
    '(/1, 2, 3/)'
    >>> fcode(ac, standard=2003, source_format='free')
    '[1, 2, 3]'

    """
    __slots__ = _fields = ('elements',)
    _construct_elements = staticmethod(_mk_Tuple)


class ImpliedDoLoop(Token):
    """ Represents an implied do loop in Fortran.

    Examples
    ========

    >>> from sympy import Symbol, fcode
    >>> from sympy.codegen.fnodes import ImpliedDoLoop, ArrayConstructor
    >>> i = Symbol('i', integer=True)
    >>> idl = ImpliedDoLoop(i**3, i, -3, 3, 2)  # -27, -1, 1, 27
    >>> ac = ArrayConstructor([-28, idl, 28]) # -28, -27, -1, 1, 27, 28
    >>> fcode(ac, standard=2003, source_format='free')
    '[-28, (i**3, i = -3, 3, 2), 28]'

    """
    __slots__ = _fields = ('expr', 'counter', 'first', 'last', 'step')
    defaults = {'step': Integer(1)}
    _construct_expr = staticmethod(sympify)
    _construct_counter = staticmethod(sympify)
    _construct_first = staticmethod(sympify)
    _construct_last = staticmethod(sympify)
    _construct_step = staticmethod(sympify)


class Extent(Basic):
    """ Represents a dimension extent.

    Examples
    ========

    >>> from sympy.codegen.fnodes import Extent
    >>> e = Extent(-3, 3)  # -3, -2, -1, 0, 1, 2, 3
    >>> from sympy import fcode
    >>> fcode(e, source_format='free')
    '-3:3'
    >>> from sympy.codegen.ast import Variable, real
    >>> from sympy.codegen.fnodes import dimension, intent_out
    >>> dim = dimension(e, e)
    >>> arr = Variable('x', real, attrs=[dim, intent_out])
    >>> fcode(arr.as_Declaration(), source_format='free', standard=2003)
    'real*8, dimension(-3:3, -3:3), intent(out) :: x'

    """
    def __new__(cls, *args):
        if len(args) == 2:
            low, high = args
            return Basic.__new__(cls, sympify(low), sympify(high))
        elif len(args) == 0 or (len(args) == 1 and args[0] in (':', None)):
            return Basic.__new__(cls)  # assumed shape
        else:
            raise ValueError("Expected 0 or 2 args (or one argument == None or ':')")

    def _sympystr(self, printer):
        if len(self.args) == 0:
            return ':'
        return ":".join(str(arg) for arg in self.args)

assumed_extent = Extent() # or Extent(':'), Extent(None)


def dimension(*args):
    """ Creates a 'dimension' Attribute with (up to 7) extents.

    Examples
    ========

    >>> from sympy import fcode
    >>> from sympy.codegen.fnodes import dimension, intent_in
    >>> dim = dimension('2', ':')  # 2 rows, runtime determined number of columns
    >>> from sympy.codegen.ast import Variable, integer
    >>> arr = Variable('a', integer, attrs=[dim, intent_in])
    >>> fcode(arr.as_Declaration(), source_format='free', standard=2003)
    'integer*4, dimension(2, :), intent(in) :: a'

    """
    if len(args) > 7:
        raise ValueError("Fortran only supports up to 7 dimensional arrays")
    parameters = []
    for arg in args:
        if isinstance(arg, Extent):
            parameters.append(arg)
        elif isinstance(arg, str):
            if arg == ':':
                parameters.append(Extent())
            else:
                parameters.append(String(arg))
        elif iterable(arg):
            parameters.append(Extent(*arg))
        else:
            parameters.append(sympify(arg))
    if len(args) == 0:
        raise ValueError("Need at least one dimension")
    return Attribute('dimension', parameters)


assumed_size = dimension('*')

def array(symbol, dim, intent=None, *, attrs=(), value=None, type=None):
    """ Convenience function for creating a Variable instance for a Fortran array.

    Parameters
    ==========

    symbol : symbol
    dim : Attribute or iterable
        If dim is an ``Attribute`` it need to have the name 'dimension'. If it is
        not an ``Attribute``, then it is passed to :func:`dimension` as ``*dim``
    intent : str
        One of: 'in', 'out', 'inout' or None
    \\*\\*kwargs:
        Keyword arguments for ``Variable`` ('type' & 'value')

    Examples
    ========

    >>> from sympy import fcode
    >>> from sympy.codegen.ast import integer, real
    >>> from sympy.codegen.fnodes import array
    >>> arr = array('a', '*', 'in', type=integer)
    >>> print(fcode(arr.as_Declaration(), source_format='free', standard=2003))
    integer*4, dimension(*), intent(in) :: a
    >>> x = array('x', [3, ':', ':'], intent='out', type=real)
    >>> print(fcode(x.as_Declaration(value=1), source_format='free', standard=2003))
    real*8, dimension(3, :, :), intent(out) :: x = 1

    """
    if isinstance(dim, Attribute):
        if str(dim.name) != 'dimension':
            raise ValueError("Got an unexpected Attribute argument as dim: %s" % str(dim))
    else:
        dim = dimension(*dim)

    attrs = list(attrs) + [dim]
    if intent is not None:
        if intent not in (intent_in, intent_out, intent_inout):
            intent = {'in': intent_in, 'out': intent_out, 'inout': intent_inout}[intent]
        attrs.append(intent)
    if type is None:
        return Variable.deduced(symbol, value=value, attrs=attrs)
    else:
        return Variable(symbol, type, value=value, attrs=attrs)

def _printable(arg):
    return String(arg) if isinstance(arg, str) else sympify(arg)


def allocated(array):
    """ Creates an AST node for a function call to Fortran's "allocated(...)"

    Examples
    ========

    >>> from sympy import fcode
    >>> from sympy.codegen.fnodes import allocated
    >>> alloc = allocated('x')
    >>> fcode(alloc, source_format='free')
    'allocated(x)'

    """
    return FunctionCall('allocated', [_printable(array)])


def lbound(array, dim=None, kind=None):
    """ Creates an AST node for a function call to Fortran's "lbound(...)"

    Parameters
    ==========

    array : Symbol or String
    dim : expr
    kind : expr

    Examples
    ========

    >>> from sympy import fcode
    >>> from sympy.codegen.fnodes import lbound
    >>> lb = lbound('arr', dim=2)
    >>> fcode(lb, source_format='free')
    'lbound(arr, 2)'

    """
    return FunctionCall(
        'lbound',
        [_printable(array)] +
        ([_printable(dim)] if dim else []) +
        ([_printable(kind)] if kind else [])
    )


def ubound(array, dim=None, kind=None):
    return FunctionCall(
        'ubound',
        [_printable(array)] +
        ([_printable(dim)] if dim else []) +
        ([_printable(kind)] if kind else [])
    )


def shape(source, kind=None):
    """ Creates an AST node for a function call to Fortran's "shape(...)"

    Parameters
    ==========

    source : Symbol or String
    kind : expr

    Examples
    ========

    >>> from sympy import fcode
    >>> from sympy.codegen.fnodes import shape
    >>> shp = shape('x')
    >>> fcode(shp, source_format='free')
    'shape(x)'

    """
    return FunctionCall(
        'shape',
        [_printable(source)] +
        ([_printable(kind)] if kind else [])
    )


def size(array, dim=None, kind=None):
    """ Creates an AST node for a function call to Fortran's "size(...)"

    Examples
    ========

    >>> from sympy import fcode, Symbol
    >>> from sympy.codegen.ast import FunctionDefinition, real, Return
    >>> from sympy.codegen.fnodes import array, sum_, size
    >>> a = Symbol('a', real=True)
    >>> body = [Return((sum_(a**2)/size(a))**.5)]
    >>> arr = array(a, dim=[':'], intent='in')
    >>> fd = FunctionDefinition(real, 'rms', [arr], body)
    >>> print(fcode(fd, source_format='free', standard=2003))
    real*8 function rms(a)
    real*8, dimension(:), intent(in) :: a
    rms = sqrt(sum(a**2)*1d0/size(a))
    end function

    """
    return FunctionCall(
        'size',
        [_printable(array)] +
        ([_printable(dim)] if dim else []) +
        ([_printable(kind)] if kind else [])
    )


def reshape(source, shape, pad=None, order=None):
    """ Creates an AST node for a function call to Fortran's "reshape(...)"

    Parameters
    ==========

    source : Symbol or String
    shape : ArrayExpr

    """
    return FunctionCall(
        'reshape',
        [_printable(source), _printable(shape)] +
        ([_printable(pad)] if pad else []) +
        ([_printable(order)] if pad else [])
    )


def bind_C(name=None):
    """ Creates an Attribute ``bind_C`` with a name.

    Parameters
    ==========

    name : str

    Examples
    ========

    >>> from sympy import fcode, Symbol
    >>> from sympy.codegen.ast import FunctionDefinition, real, Return
    >>> from sympy.codegen.fnodes import array, sum_, bind_C
    >>> a = Symbol('a', real=True)
    >>> s = Symbol('s', integer=True)
    >>> arr = array(a, dim=[s], intent='in')
    >>> body = [Return((sum_(a**2)/s)**.5)]
    >>> fd = FunctionDefinition(real, 'rms', [arr, s], body, attrs=[bind_C('rms')])
    >>> print(fcode(fd, source_format='free', standard=2003))
    real*8 function rms(a, s) bind(C, name="rms")
    real*8, dimension(s), intent(in) :: a
    integer*4 :: s
    rms = sqrt(sum(a**2)/s)
    end function

    """
    return Attribute('bind_C', [String(name)] if name else [])

class GoTo(Token):
    """ Represents a goto statement in Fortran

    Examples
    ========

    >>> from sympy.codegen.fnodes import GoTo
    >>> go = GoTo([10, 20, 30], 'i')
    >>> from sympy import fcode
    >>> fcode(go, source_format='free')
    'go to (10, 20, 30), i'

    """
    __slots__ = _fields = ('labels', 'expr')
    defaults = {'expr': none}
    _construct_labels = staticmethod(_mk_Tuple)
    _construct_expr = staticmethod(sympify)


class FortranReturn(Token):
    """ AST node explicitly mapped to a fortran "return".

    Explanation
    ===========

    Because a return statement in fortran is different from C, and
    in order to aid reuse of our codegen ASTs the ordinary
    ``.codegen.ast.Return`` is interpreted as assignment to
    the result variable of the function. If one for some reason needs
    to generate a fortran RETURN statement, this node should be used.

    Examples
    ========

    >>> from sympy.codegen.fnodes import FortranReturn
    >>> from sympy import fcode
    >>> fcode(FortranReturn('x'))
    '       return x'

    """
    __slots__ = _fields = ('return_value',)
    defaults = {'return_value': none}
    _construct_return_value = staticmethod(sympify)


class FFunction(Function):
    _required_standard = 77

    def _fcode(self, printer):
        name = self.__class__.__name__
        if printer._settings['standard'] < self._required_standard:
            raise NotImplementedError("%s requires Fortran %d or newer" %
                                      (name, self._required_standard))
        return '{}({})'.format(name, ', '.join(map(printer._print, self.args)))


class F95Function(FFunction):
    _required_standard = 95


class isign(FFunction):
    """ Fortran sign intrinsic for integer arguments. """
    nargs = 2


class dsign(FFunction):
    """ Fortran sign intrinsic for double precision arguments. """
    nargs = 2


class cmplx(FFunction):
    """ Fortran complex conversion function. """
    nargs = 2  # may be extended to (2, 3) at a later point


class kind(FFunction):
    """ Fortran kind function. """
    nargs = 1


class merge(F95Function):
    """ Fortran merge function """
    nargs = 3


class _literal(Float):
    _token = None  # type: str
    _decimals = None  # type: int

    def _fcode(self, printer, *args, **kwargs):
        mantissa, sgnd_ex = ('%.{}e'.format(self._decimals) % self).split('e')
        mantissa = mantissa.strip('0').rstrip('.')
        ex_sgn, ex_num = sgnd_ex[0], sgnd_ex[1:].lstrip('0')
        ex_sgn = '' if ex_sgn == '+' else ex_sgn
        return (mantissa or '0') + self._token + ex_sgn + (ex_num or '0')


class literal_sp(_literal):
    """ Fortran single precision real literal """
    _token = 'e'
    _decimals = 9


class literal_dp(_literal):
    """ Fortran double precision real literal """
    _token = 'd'
    _decimals = 17


class sum_(Token, Expr):
    __slots__ = _fields = ('array', 'dim', 'mask')
    defaults = {'dim': none, 'mask': none}
    _construct_array = staticmethod(sympify)
    _construct_dim = staticmethod(sympify)


class product_(Token, Expr):
    __slots__ = _fields = ('array', 'dim', 'mask')
    defaults = {'dim': none, 'mask': none}
    _construct_array = staticmethod(sympify)
    _construct_dim = staticmethod(sympify)