File size: 12,061 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
from sympy.core import Basic
from sympy.core.containers import Tuple
from sympy.tensor.array import Array
from sympy.core.sympify import _sympify
from sympy.utilities.iterables import flatten, iterable
from sympy.utilities.misc import as_int

from collections import defaultdict


class Prufer(Basic):
    """
    The Prufer correspondence is an algorithm that describes the
    bijection between labeled trees and the Prufer code. A Prufer
    code of a labeled tree is unique up to isomorphism and has
    a length of n - 2.

    Prufer sequences were first used by Heinz Prufer to give a
    proof of Cayley's formula.

    References
    ==========

    .. [1] https://mathworld.wolfram.com/LabeledTree.html

    """
    _prufer_repr = None
    _tree_repr = None
    _nodes = None
    _rank = None

    @property
    def prufer_repr(self):
        """Returns Prufer sequence for the Prufer object.

        This sequence is found by removing the highest numbered vertex,
        recording the node it was attached to, and continuing until only
        two vertices remain. The Prufer sequence is the list of recorded nodes.

        Examples
        ========

        >>> from sympy.combinatorics.prufer import Prufer
        >>> Prufer([[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]]).prufer_repr
        [3, 3, 3, 4]
        >>> Prufer([1, 0, 0]).prufer_repr
        [1, 0, 0]

        See Also
        ========

        to_prufer

        """
        if self._prufer_repr is None:
            self._prufer_repr = self.to_prufer(self._tree_repr[:], self.nodes)
        return self._prufer_repr

    @property
    def tree_repr(self):
        """Returns the tree representation of the Prufer object.

        Examples
        ========

        >>> from sympy.combinatorics.prufer import Prufer
        >>> Prufer([[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]]).tree_repr
        [[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]]
        >>> Prufer([1, 0, 0]).tree_repr
        [[1, 2], [0, 1], [0, 3], [0, 4]]

        See Also
        ========

        to_tree

        """
        if self._tree_repr is None:
            self._tree_repr = self.to_tree(self._prufer_repr[:])
        return self._tree_repr

    @property
    def nodes(self):
        """Returns the number of nodes in the tree.

        Examples
        ========

        >>> from sympy.combinatorics.prufer import Prufer
        >>> Prufer([[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]]).nodes
        6
        >>> Prufer([1, 0, 0]).nodes
        5

        """
        return self._nodes

    @property
    def rank(self):
        """Returns the rank of the Prufer sequence.

        Examples
        ========

        >>> from sympy.combinatorics.prufer import Prufer
        >>> p = Prufer([[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]])
        >>> p.rank
        778
        >>> p.next(1).rank
        779
        >>> p.prev().rank
        777

        See Also
        ========

        prufer_rank, next, prev, size

        """
        if self._rank is None:
            self._rank = self.prufer_rank()
        return self._rank

    @property
    def size(self):
        """Return the number of possible trees of this Prufer object.

        Examples
        ========

        >>> from sympy.combinatorics.prufer import Prufer
        >>> Prufer([0]*4).size == Prufer([6]*4).size == 1296
        True

        See Also
        ========

        prufer_rank, rank, next, prev

        """
        return self.prev(self.rank).prev().rank + 1

    @staticmethod
    def to_prufer(tree, n):
        """Return the Prufer sequence for a tree given as a list of edges where
        ``n`` is the number of nodes in the tree.

        Examples
        ========

        >>> from sympy.combinatorics.prufer import Prufer
        >>> a = Prufer([[0, 1], [0, 2], [0, 3]])
        >>> a.prufer_repr
        [0, 0]
        >>> Prufer.to_prufer([[0, 1], [0, 2], [0, 3]], 4)
        [0, 0]

        See Also
        ========
        prufer_repr: returns Prufer sequence of a Prufer object.

        """
        d = defaultdict(int)
        L = []
        for edge in tree:
            # Increment the value of the corresponding
            # node in the degree list as we encounter an
            # edge involving it.
            d[edge[0]] += 1
            d[edge[1]] += 1
        for i in range(n - 2):
            # find the smallest leaf
            for x in range(n):
                if d[x] == 1:
                    break
            # find the node it was connected to
            y = None
            for edge in tree:
                if x == edge[0]:
                    y = edge[1]
                elif x == edge[1]:
                    y = edge[0]
                if y is not None:
                    break
            # record and update
            L.append(y)
            for j in (x, y):
                d[j] -= 1
                if not d[j]:
                    d.pop(j)
            tree.remove(edge)
        return L

    @staticmethod
    def to_tree(prufer):
        """Return the tree (as a list of edges) of the given Prufer sequence.

        Examples
        ========

        >>> from sympy.combinatorics.prufer import Prufer
        >>> a = Prufer([0, 2], 4)
        >>> a.tree_repr
        [[0, 1], [0, 2], [2, 3]]
        >>> Prufer.to_tree([0, 2])
        [[0, 1], [0, 2], [2, 3]]

        References
        ==========

        .. [1] https://hamberg.no/erlend/posts/2010-11-06-prufer-sequence-compact-tree-representation.html

        See Also
        ========
        tree_repr: returns tree representation of a Prufer object.

        """
        tree = []
        last = []
        n = len(prufer) + 2
        d = defaultdict(lambda: 1)
        for p in prufer:
            d[p] += 1
        for i in prufer:
            for j in range(n):
            # find the smallest leaf (degree = 1)
                if d[j] == 1:
                    break
            # (i, j) is the new edge that we append to the tree
            # and remove from the degree dictionary
            d[i] -= 1
            d[j] -= 1
            tree.append(sorted([i, j]))
        last = [i for i in range(n) if d[i] == 1] or [0, 1]
        tree.append(last)

        return tree

    @staticmethod
    def edges(*runs):
        """Return a list of edges and the number of nodes from the given runs
        that connect nodes in an integer-labelled tree.

        All node numbers will be shifted so that the minimum node is 0. It is
        not a problem if edges are repeated in the runs; only unique edges are
        returned. There is no assumption made about what the range of the node
        labels should be, but all nodes from the smallest through the largest
        must be present.

        Examples
        ========

        >>> from sympy.combinatorics.prufer import Prufer
        >>> Prufer.edges([1, 2, 3], [2, 4, 5]) # a T
        ([[0, 1], [1, 2], [1, 3], [3, 4]], 5)

        Duplicate edges are removed:

        >>> Prufer.edges([0, 1, 2, 3], [1, 4, 5], [1, 4, 6]) # a K
        ([[0, 1], [1, 2], [1, 4], [2, 3], [4, 5], [4, 6]], 7)

        """
        e = set()
        nmin = runs[0][0]
        for r in runs:
            for i in range(len(r) - 1):
                a, b = r[i: i + 2]
                if b < a:
                    a, b = b, a
                e.add((a, b))
        rv = []
        got = set()
        nmin = nmax = None
        for ei in e:
            got.update(ei)
            nmin = min(ei[0], nmin) if nmin is not None else ei[0]
            nmax = max(ei[1], nmax) if nmax is not None else ei[1]
            rv.append(list(ei))
        missing = set(range(nmin, nmax + 1)) - got
        if missing:
            missing = [i + nmin for i in missing]
            if len(missing) == 1:
                msg = 'Node %s is missing.' % missing.pop()
            else:
                msg = 'Nodes %s are missing.' % sorted(missing)
            raise ValueError(msg)
        if nmin != 0:
            for i, ei in enumerate(rv):
                rv[i] = [n - nmin for n in ei]
            nmax -= nmin
        return sorted(rv), nmax + 1

    def prufer_rank(self):
        """Computes the rank of a Prufer sequence.

        Examples
        ========

        >>> from sympy.combinatorics.prufer import Prufer
        >>> a = Prufer([[0, 1], [0, 2], [0, 3]])
        >>> a.prufer_rank()
        0

        See Also
        ========

        rank, next, prev, size

        """
        r = 0
        p = 1
        for i in range(self.nodes - 3, -1, -1):
            r += p*self.prufer_repr[i]
            p *= self.nodes
        return r

    @classmethod
    def unrank(self, rank, n):
        """Finds the unranked Prufer sequence.

        Examples
        ========

        >>> from sympy.combinatorics.prufer import Prufer
        >>> Prufer.unrank(0, 4)
        Prufer([0, 0])

        """
        n, rank = as_int(n), as_int(rank)
        L = defaultdict(int)
        for i in range(n - 3, -1, -1):
            L[i] = rank % n
            rank = (rank - L[i])//n
        return Prufer([L[i] for i in range(len(L))])

    def __new__(cls, *args, **kw_args):
        """The constructor for the Prufer object.

        Examples
        ========

        >>> from sympy.combinatorics.prufer import Prufer

        A Prufer object can be constructed from a list of edges:

        >>> a = Prufer([[0, 1], [0, 2], [0, 3]])
        >>> a.prufer_repr
        [0, 0]

        If the number of nodes is given, no checking of the nodes will
        be performed; it will be assumed that nodes 0 through n - 1 are
        present:

        >>> Prufer([[0, 1], [0, 2], [0, 3]], 4)
        Prufer([[0, 1], [0, 2], [0, 3]], 4)

        A Prufer object can be constructed from a Prufer sequence:

        >>> b = Prufer([1, 3])
        >>> b.tree_repr
        [[0, 1], [1, 3], [2, 3]]

        """
        arg0 = Array(args[0]) if args[0] else Tuple()
        args = (arg0,) + tuple(_sympify(arg) for arg in args[1:])
        ret_obj = Basic.__new__(cls, *args, **kw_args)
        args = [list(args[0])]
        if args[0] and iterable(args[0][0]):
            if not args[0][0]:
                raise ValueError(
                    'Prufer expects at least one edge in the tree.')
            if len(args) > 1:
                nnodes = args[1]
            else:
                nodes = set(flatten(args[0]))
                nnodes = max(nodes) + 1
                if nnodes != len(nodes):
                    missing = set(range(nnodes)) - nodes
                    if len(missing) == 1:
                        msg = 'Node %s is missing.' % missing.pop()
                    else:
                        msg = 'Nodes %s are missing.' % sorted(missing)
                    raise ValueError(msg)
            ret_obj._tree_repr = [list(i) for i in args[0]]
            ret_obj._nodes = nnodes
        else:
            ret_obj._prufer_repr = args[0]
            ret_obj._nodes = len(ret_obj._prufer_repr) + 2
        return ret_obj

    def next(self, delta=1):
        """Generates the Prufer sequence that is delta beyond the current one.

        Examples
        ========

        >>> from sympy.combinatorics.prufer import Prufer
        >>> a = Prufer([[0, 1], [0, 2], [0, 3]])
        >>> b = a.next(1) # == a.next()
        >>> b.tree_repr
        [[0, 2], [0, 1], [1, 3]]
        >>> b.rank
        1

        See Also
        ========

        prufer_rank, rank, prev, size

        """
        return Prufer.unrank(self.rank + delta, self.nodes)

    def prev(self, delta=1):
        """Generates the Prufer sequence that is -delta before the current one.

        Examples
        ========

        >>> from sympy.combinatorics.prufer import Prufer
        >>> a = Prufer([[0, 1], [1, 2], [2, 3], [1, 4]])
        >>> a.rank
        36
        >>> b = a.prev()
        >>> b
        Prufer([1, 2, 0])
        >>> b.rank
        35

        See Also
        ========

        prufer_rank, rank, next, size

        """
        return Prufer.unrank(self.rank -delta, self.nodes)